THE PARADIGM SHIFT

パラダイムシフト
結核終息のための世界計画：2018-2022
医療関連事業
疾病の診断から治療までを担う

ニュートラシューティカルズ
関連事業
日々の健康維持・増進をサポートする

両輪で身体全体を考える

世界の人々の健康に貢献する
トータルヘルスケアカンパニーを目指します。

Otsuka-people creating new products for better health worldwide
https://www.otsuka.co.jp/
パラダイムシフト
名詞[可算]
今までの考え方や価値観が180度変わること。
国連の結核終息目標を達成するためには
778 億米ドルが必要とされている。

5年間：2018-2022

(単位：億米ドル)

- 結核予防と治療: 650 億米ドル
- 新規診断法、治療薬、ワクチンの研究開発: 108 億米ドル
- 基礎科学研究: 20 億米ドル
目次

謝辞 .......................................................................................................................................... 8
略語及び頭字語 ...................................................................................................................... 10
用語集 .................................................................................................................................... 12
序文 ........................................................................................................................................ 17
要約 ........................................................................................................................................ 19
はじめに .................................................................................................................................. 24

第 1 章 結核の終息に向けたパラダイムシフト ................................................................. 30
  第 1 節 概要 ..................................................................................................................... 30
  第 2 節 優先すべき行動 ................................................................................................. 30
  第 3 節 人間中心の国際的なターゲット： 90-(90)-90 ターゲット ............................... 31
  第 4 節 パラダイムシフト ............................................................................................... 34
  第 5 節 結核終息のための経済施策 ................................................................................. 37
  第 6 節 進捗確認 .............................................................................................................. 38
  第 7 節 結核への誓約を果たすためのアカウンタビリティ ............................................ 39
    第 1 項 国連総会ハイレベル会合におけるアカウンタビリティに関する誓約............ 39
    第 2 項 アカウンタビリティに必须となる結核対策マルチセクトラル・アカウンタビリテ枠組み（MAF-TB） ................................................................. 39
  第 8 節 アカウンタビリティの保持 ................................................................................. 41

第 2 章 インパクトのあるモデル分析と結果の種々相 ................................................. 44
  第 1 節 概要 ..................................................................................................................... 44
  第 2 節 優先すべき行動 ................................................................................................. 44
  第 3 節 国連総会ハイレベル会合の結核治療・予防目標のモデル分析研究 ................. 45
  第 4 節 モデル分析の結果 ............................................................................................ 45
  第 5 節 国別に見た状況 ................................................................................................. 54
第3章 結核リスク集団に手を差し伸べる..................................................................................63

第1節 概要 .....................................................................................................................63
第2節 優先すべき行動 ...................................................................................................63
第3節 結核リスク集団に手を差し伸べることとは公平性と人権における最重要課題 ....65

第4章 主要な協働パートナー：市民社会、コミュニティ及び民間セクター ..............85

第1節 概要 .....................................................................................................................85
第2節 優先すべき行動 ...................................................................................................85
第3節 結核への対応において鍵となるパートナーとしての市⺠社会とコミュニティ 86
第4節 有意义なコミュニティの関与と調整の確保 .........................................................87
第5節 学術コミュニティとの提携 ................................................................................97
第6節 民間セクターとの提携 .......................................................................................98
第7節 国としてのマルチセクトラル・プラットフォームの支援 ..............................102

第5章 結核対策におけるユニバーサルヘルスカバレッジ（UHC）と社会経済的活動....103

第1節 概要 ...................................................................................................................103
第2節 優先すべき行動 .................................................................................................103
第3節 医療サービスの改善：UHC .............................................................................105
第4節 貧困削減と社会的保護活動における結核の統合 ..............................................107
第5節 UHCにおける薬剤耐性への取り組み ...............................................................110
第6節 都市環境の改善 ...............................................................................................111
第7節 法的資源 ..........................................................................................................111
第8節 実現可能な環境づくり：政治的意思と政策立案 ............................................112

第6章 新しいツール .....................................................................................................116

第1節 概要 ....................................................................................................................116
第2節 優先すべき行動 .................................................................................................117
第3節 結核研究計画の前進 ........................................................................................119
  第1項 新しい結核ツール研究開発するための戦略的フレームワーク ........................119
  第2項 新しいツールに関する研究開発の進捗状況 .................................................131
第3項 優先すべき、すぐに開始できる（off the shelf）プロジェクト ..........................136
第4項 基礎科学研究 ....................................................................................................139
第5項 小児医学及び結核リスク集団 ........................................................................141
第4節 研究を可能にする環境づくり ........................................................................142
第1項 研究機関・パートナーシップ・協働拡大に向けて ........................................142
第2項 臨床試験を実施するための現場の能力向上 ................................................144
第3項 効率的で予測可能な規制及び政策の確保 .....................................................145
第4項 才能溢れる結核研究者への支援 ....................................................................145
第5項 新しいツールへの投資 ..................................................................................146
第6項 不作為のコスト：研究開発資金の不足がもたらすものは？ ..........................149
第7項 新しい結核ツールの提唱 ...............................................................................151
第8項 研究開発プロセス全体におけるコミュニティ関与への成功事例 ..................153
第5節 新しい結核ツールを水平展開し、アクセスを最適化する ..............................155
第1項 新しい結核ツールの提供のためのアクセス原則の適用 ................................155
第2項 オペレーションナルリサーチの利用を拡大する ......................................157
第3項 デジタルヘルスと精密医療.........................................................................158

第7章 資源に関するニーズ ..........................................................................................162
第1節 概要 ................................................................................................................162
第2節 優先すべき行動 .............................................................................................163
第3節 国連総会ハイレベル会合の目標達成に向けた投資要件..............................164
第4節 原価計算手法と制限 ......................................................................................169
第5節 世界計画のための資金源 ..............................................................................173
第6節 研究開発のための資金調達ニーズを満たす ..................................................180

ボックス

ボックス 0.1: WHO の結核終息戦略 ......................................................................26
ボックス 0.2: 結核と持続可能な開発目標 .........................................................28
ボックス 1.1: FIND. TREAT. ALL.#ENDTB ......................................................33
ボックス 1.2: 南アフリカ: 進行中のパラダイムシフト ......................................38
ボックス 1.3: インド: 結核終息へ向けた野心的な政治的宣言 ...............................40
ボックス 1.4: 結核に関する政治宣言で国連加盟国によって承認されたアカウンタビリティ
への取り組み........................................................................................................42
ボックス 3.1:結核と人権における重要課題.................................................................68
ボックス 3.2:ストップ結核パートナーシップ/GDF による小児薬耐性結核対策新規ツー
ル普及支援の成果..................................................................................................73
ボックス 4.1:地球規模及び地域レベルの市民社会ネットワーク ..................................90
ボックス 4.2:エチオピアの保健普及員（HEW） .........................................................95
ボックス 4.3:結核終息のために議会のチャンピオンと提携 .......................................96
ボックス 5.1:UHC に関する国連の政治宣言における結核についての主要な誓約 ..........105
ボックス 5.2:UHC とは何？ ........................................................................................106
ボックス 5.3:社会的保護と政府のコミットメント......................................................108
ボックス 5.4:インドの国家現金給付プログラム...............................................................112
ボックス 5.5:結核終息のためのキャパシティの維持：歴史から学ぶ.............................113
ボックス 5.6:日本: UHC への道筋として結核治療を拡大............................................115
ボックス 6.1:新しい1HP 療法により結核予防的治療が1か月に短縮..........................132
ボックス 6.2:POC 診断テストとしての FujiLAM の可能性 .........................................133
ボックス 6.3:M72 ワクチン試験はワクチン研究を前進させる.................................134
ボックス 6.4:結核の研究開発のための WHO 世界戦略...............................................135
ボックス 6.5:各国の青少年及び成人向けの新規結核ワクチン供給体制を確保する......156
ボックス 6.6:TB REACH 治療遵守デジタル技術（DAT）プロジェクト .......................161
ボックス 7.1:世界計画により何が達成されるのか？ .......................................................170
ボックス 7.2:結核ケアへの投資は保健システムに長期的な利益をもたらす ................172

図

図 0.1: 結核に関する国連総会ハイレベル会合で定められた、鍵となる目標の概要 .......26
図 0.2: 行動のスケジュール .........................................................................................28
図 1.1: 90-(90)-90 ターゲット .......................................................................................32
図 1.2: マルチセクトラル・アカウンタビリティ枠組み(MAF-TB)に不可欠な要素 .......41
図 2.1: 結核の罹患率への影響 ...............................................................................41
図 2.2: 結核に関する国連総会ハイレベル会合での目標に対する達成度（累計・年別）.47
図 2.3: 結核に関する国連総会ハイレベル会合での目標に対する達成度（累計・国区別）
.................................................................................................................................47
図 2.4: 結核に関する国連総会ハイレベル会合での目標の達成が罹患率に与える影響 .....48
図 2.5: 結核に関する国連総会ハイレベル会合での目標の達成が HIV 陰性結核患者の死亡
率に与える影響 ........................................................................................................48
図 2.6：9 つの国の区分 ................................. 54
図 3.1：子どもと青年の結核を終わらせるための ロードマップ .......................... 76
図 6.1：すぐに開始できる（off the shelf） プロジェクト：診断 .......................... 136
図 6.2：すぐに開始できる（off the shelf）プロジェクト：治療薬 .................... 137
図 6.3：すぐに開始できる（off the shelf）プロジェクト：ワクチン .................. 138
図 6.4：新しいツールを使用した場合と使用しなかった場合における結核発症数の予測 150
図 7.1：世界レベルで見た結核予防及び治療の資源ニーズ（単位：10 億米ドル） ....... 165
図 7.2：結核予防及び治療のための資金調達ニーズの費用区分、2018〜2022年 ........ 167
図 7.3：2018年から2022年までの費用区分別資金調達ニーズ（単位：100万米ドル） 168
図 7.4：2020年から2022年にかけて、グローバルファンドの支援対象国で必要となる31 億米ドルの資金源：考え得る資金源とギャップ ......................................................... 177

表

表 2.1：治療中の人数の予測 ................................. 49
表 2.2：治療中の子ども（0〜14歳）の人数の予測 ................................. 50
表 2.3：多剤耐性結核治療の人数の予測 ........................................ 51
表 2.4：結核予防的治療を受ける人数の予測 ................................. 52
表 3.1：結核リスク集団 ........................................ 71
表 6.1：結核に関する研究開発の資金調達ニーズの概要（単位：100万米ドル）* ........ 117
表 6.2：新薬の戦略的フレームワーク 2018〜2022 ........................................ 119
表 6.3：新しい診断の戦略的フレームワーク 2018〜2022 .................................. 122
表 6.4：新しいワクチンの戦略的フレームワーク 2018〜2022 .................................. 128
表 6.5：結核の研究開発に対する年別資金ニーズ（単位：100万米ドル）* .......... 147
表 6.6：結核デジタルツールのための目的製品プロファイルの概要 .......................... 160
表 7.1：結核予防と治療のための資金ニーズ（単位：10億米ドル） .................. 165
表 7.2：世界計画2018〜2022を実施することによるROIと正味の経済的利益 .......... 171
謝辞

ストップ結核パートナーシップは、結核終息のための世界計画 2018–2022 の作成における皆様の貢献に感謝いたします。何百もの方々が、2つのオンラインコンサルティングを含むさまざまな方法でこの世界計画の策定に寄与してくださいました。彼らひとりひとりの熱心なサポートに感謝いたします。国際保健のコミュニティで、この計画を共に実行していきたいと思います。

世界計画特別委員会
Paula I Fujiwara（委員長），Katherine Floyd, Blessina Kumar, David Lewinsohn, David Mametja, Thokozile B Nkhoma, Aaron Oxley, KS Sachdeva, Cheri Vincent, Eliud Wandwalo and Richard White.

特別委員会代理
Sevim Ahmedov, Philippe Glaziou, Janika Hauser, Rachael Hore, Mukadi YaDiul and Mohammed A Yassin.

特別委員会事務局
Mohammed Anouar, Lucica Ditiu, Suvanand Sahu and Shinichi Takenaka.

その他ストップ結核パートナーシップ事務局員
Sara Gonzalez Andino, Ramón H. Crespo, Jacob Creswell, Jacqueline Huh, Brian Kaiser, Amera Khan, James Malar, Kadira Malkoc, Enos Masini, Andrei Mosneaga, Sreenivas Nair, Gregory Paton, Nina Saouter (with the support of Diana Schwalb), Viorel Soltan and Brenda Waning.

以下の方々に特別の感謝を捧げます。
- 草稿及び編集作業 Paul M Jensen
- モデル分析作業 Carel Pretorius, Avenir Health
- 「不作為のコスト」に関するモデル分析作業 ジョンズ・ホプキンス大学ブルームバーグ公衆衛生大学院 David Dowdy

そして、新規結核診断法、新薬、新規ワクチンの各ワーキンググループから成る、新しいツールに関するワーキンググループのメンバーとリーダーシップに、心から感謝いたします。
す。
ストップ結核パートナーシップ理事会
またこの文書は、ビル＆メリンダ・ゲイツ財団、USAID ならびに世界エイズ・結核・マラリア対策基金からの支援なしでは作成できませんでした。
略語及び頭字語

<table>
<thead>
<tr>
<th>略語</th>
<th>英語表記</th>
<th>日本語表記</th>
</tr>
</thead>
<tbody>
<tr>
<td>aDSM</td>
<td>Active drug-safety monitoring</td>
<td>積極的な薬剤安全性モニタリング</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial intelligence</td>
<td>人工知能</td>
</tr>
<tr>
<td>AMR</td>
<td>Antimicrobial resistance</td>
<td>薬剤耐性</td>
</tr>
<tr>
<td>BRICS</td>
<td>Brazil, Russian Federation, India, China, South Africa</td>
<td>ブラジル、ロシア連邦、インド、中国、南アフリカ</td>
</tr>
<tr>
<td>CBM</td>
<td>Community-based monitoring</td>
<td>コミュニティベースのモニタリング</td>
</tr>
<tr>
<td>COE</td>
<td>Challenging operating environment</td>
<td>難しい活動環境</td>
</tr>
<tr>
<td>CRG</td>
<td>Community, rights and gender</td>
<td>コミュニティ、権利、ジェンダー</td>
</tr>
<tr>
<td>CSO</td>
<td>Civil society organization</td>
<td>市民社会組織</td>
</tr>
<tr>
<td>CSR</td>
<td>Corporate social responsibility</td>
<td>企業の社会的責任</td>
</tr>
<tr>
<td>CSS</td>
<td>Community systems strengthening</td>
<td>コミュニティシステム強化</td>
</tr>
<tr>
<td>DALY</td>
<td>Disability-adjusted life year</td>
<td>障がい調整生命年</td>
</tr>
<tr>
<td>DAT</td>
<td>Digital adherence technology</td>
<td>デジタル服薬観察技術</td>
</tr>
<tr>
<td>DR-TB</td>
<td>Drug-resistant tuberculosis</td>
<td>薬剤耐性結核</td>
</tr>
<tr>
<td>DST</td>
<td>Drug susceptibility testing</td>
<td>薬剤感受性試験</td>
</tr>
<tr>
<td>DS-TB</td>
<td>Drug-susceptible tuberculosis</td>
<td>薬剤感受性結核</td>
</tr>
<tr>
<td>FBO</td>
<td>Faith-based organization</td>
<td>信仰に基づく組織</td>
</tr>
<tr>
<td>FDA</td>
<td>U.S. Food and Drug Administration</td>
<td>米国食品医薬品局</td>
</tr>
<tr>
<td>GCP</td>
<td>Good Clinical Practice</td>
<td>臨床試験の実施基準</td>
</tr>
<tr>
<td>GDF</td>
<td>Global Drug Facility</td>
<td>世界抗結核薬基金</td>
</tr>
<tr>
<td>GERD</td>
<td>Gross domestic expenditure on research and development</td>
<td>国内の研究開発への総支出</td>
</tr>
<tr>
<td>GNI</td>
<td>Gross national income</td>
<td>国民総所得</td>
</tr>
<tr>
<td>LAM</td>
<td>Lipoarabinomannan</td>
<td>リポアラビノマンナン</td>
</tr>
<tr>
<td>LMIC</td>
<td>Low- and middle-income country</td>
<td>低中所得国</td>
</tr>
<tr>
<td>MAF-TB</td>
<td>Multisectoral Accountability Framework to Accelerate Progress to Eliminate Tuberculosis by 2030</td>
<td>2030 年までに結核を終わせるための進展を加速するための WHO マルチセクト</td>
</tr>
<tr>
<td>アカウントビリティ枠組み</td>
<td></td>
<td>MDR-TB</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>NGO</td>
<td>Nongovernmental organization</td>
<td>非政府組織</td>
</tr>
<tr>
<td>NGS</td>
<td>Next-generation sequencing</td>
<td>次世代シーケンシング</td>
</tr>
<tr>
<td>NHP</td>
<td>Nonhuman primate</td>
<td>非ヒト霊長類</td>
</tr>
<tr>
<td>NTP</td>
<td>National tuberculosis programme</td>
<td>国家結核プログラム</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
<td>経済協力開発機構</td>
</tr>
<tr>
<td>PDP</td>
<td>Product development partnership</td>
<td>製品開発パートナーシップ</td>
</tr>
<tr>
<td>POC</td>
<td>Point-of-care</td>
<td>臨床現場</td>
</tr>
<tr>
<td>PPM</td>
<td>Public–private mix</td>
<td>官民混合</td>
</tr>
<tr>
<td>R&amp;D</td>
<td>Research and development</td>
<td>研究開発</td>
</tr>
<tr>
<td>ROI</td>
<td>Return on investment</td>
<td>投資収益率</td>
</tr>
<tr>
<td>RR-TB</td>
<td>Rifampicin-resistant tuberculosis</td>
<td>リファンビルシン耐性結核</td>
</tr>
<tr>
<td>SADC</td>
<td>Southern African Development Community</td>
<td>南部アフリカ開発共同体</td>
</tr>
<tr>
<td>SDG</td>
<td>Sustainable Development Goal</td>
<td>持続可能な開発目標</td>
</tr>
<tr>
<td>SHI</td>
<td>Social health insurance</td>
<td>社会健康保険</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
<td>結核</td>
</tr>
<tr>
<td>TIME</td>
<td>TB Impact and Model Estimate</td>
<td>結核インパクトとモデル推定</td>
</tr>
<tr>
<td>TPP</td>
<td>Target product profile</td>
<td>目標とする製品性能</td>
</tr>
<tr>
<td>UHC</td>
<td>Universal Health Coverage</td>
<td>ユニバーサルヘルスカバレッジ</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
<td>国際連合、国連</td>
</tr>
<tr>
<td>UNHLM</td>
<td>United Nations High-Level Meeting</td>
<td>国連総会ハイレベル会合</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
<td>世界保健機関</td>
</tr>
<tr>
<td>XDR-TB</td>
<td>Extensively drug-resistant tuberculosis</td>
<td>超多剤耐性結核</td>
</tr>
</tbody>
</table>
用語集

活動性結核症
結核菌が体のさまざまな部分で増殖して起こる病気。活動性結核症の症状には、咳、脱力感、体重減少、発熱、食欲不振、寝汗などがある。活動性結核は感染性があり、結核を他の人に感染させる。世界計画において、「結核をもっている人」または「結核を患っている人」とは、活動性結核症のある人を指す。

抗生物質
細菌感染症の治療に使用される薬物。抗結核薬も抗生物質である。しかし、抗生物質はウイルス感染に効果がない。

薬剤耐性（AMR）
抗生物質の影響を受けない微生物が生じること。通常では、微生物に特殊な変異が発生し、特定の薬物への感受性が低下することで薬剤耐性が起こる。

BCG
カルメット-ゲラン桿菌（BCG）ワクチンは、開発者のフランスの科学者、カルメットとゲランにちなんで名付けられた。BCG は、青少年と成人に対しては効果が限定的である一方、子どもにとって重篤な症状をもたらす結核を予防できることから、結核がよく見られる国において、乳児や小さな子どもに投与されている。

患者発見
患者発見ある人の結核が診断され、国のサーベイランスシステムに届け出られること。（注：英語では「case detection」といい、日本語の「患者」を「Case」というのがこれについての注意点が続く）。Case という用語は、病気の症例を指すために公衆衛生の分野で広く使用されているが、人間性の観点から医療現場では慎重に使用する必要がある。人は症例ではなく、私たちと同じ人間であるからだ。もし、結核の治療を求めている、または受けている人が、医療職員が自分たちのことを「症例」と呼んでいるのを耳にすれば、それが侮辱的であると感じるかもしれない。

接触者
感染性結核の人と一緒にいた人。
濃厚接触者
感染性結核患者と長期にわたり、頻繁に、または激しく接触した人。一緒に住んでいる人、近くで一緒に多くの時間を過ごしている人などが含まれる。濃厚接触者は、結核に感染している人に遭遇頻度が少ない接触者と比べ、結核菌に感染する可能性が高い。

コミュニティシステム
コミュニティが直面する課題やニーズに対処するための一連の構造、メカニズム、プロセス、実行者。コミュニティシステムは、コミュニティメンバー、公式・非公式のコミュニティ組織とネットワーク、その他の市民社会組織で構成される。コミュニティシステムは、医療システムよりも形式化されておらず、明確な定義もない。コミュニティシステムを構成する団体は、コミュニティと密接な関係がある。したがって、彼らは最も影響を受ける人々が直面する問題を最も把握しており、最良の方法を見つけられる立場にある。

コミュニティシステムの強化
改善された医療サービスの提供に関する知識とアクセスを向上させるために、コミュニティが選差した組織を形成、もしくは強化するためのイニシアチブのこと。通常、インフラやシステムのキャンペーン向上、パートナーシップの構築、持続可能な資金調達ソリューションの開発などがある。

培養検査
個人の痰または他の体液に結核菌が存在するかどうかを確認する検査。しかし、この検査は、どの検査室でも2〜4週間を要する。

薬剤耐性結核
一般的に使用される抗結核薬に耐性がある結核菌の菌株によって引き起こされる結核。

超多剤耐性結核
イソニアジド及びリファンピシン（最も一般的に使用される2つの抗結核薬）に加えて、フルオロキノロンと注射可能な第2選択薬3種（アミカシン、カナマイシン、カプレオマシン）の少なくとも1つに耐性のある結核菌種によって引き起こされる疾患。広範囲薬剤耐性結核とも呼ばれる。

肺外結核
肺以外のあらゆる部位（胸膜、腎臓、脊椎、脳、リンパ節など）で見られる結核症。
ジェンダーセンシティブ
性別に配慮した政策、プログラム、またはトレーニングモジュールのこと。女性と男性の両方が社会の中で行動者であるにも関わらず、どちらかが様々な形で不当に制約されていることがあり得る。その結果、それぞれが相反する認識、ニーズ、利益、優先事項を持っている可能性があるということを考えた取り組みである。

多剤耐性結核
少なくともイソニアジド及びリファンピシン（最も一般的に使用される2つの抗結核薬）に耐性のある結核菌株によって引き起こされる疾患。

結核菌
結核感染と結核症を引き起こす細菌。

栄養サポート
適切な栄養を確保することを目的とした個人または世帯の食事摂取量、栄養状態及び食糧安全保障の評価を含む。バランスの取れた食事を確保し、治療と感染の副作用を軽減し、きれいな水へのアクセスを確保する方法について栄養教育とカウンセリングを提供する。必要に応じて、栄養補助食品または微量栄養素の補給を提供する。

OECD
経済協力開発機構（Organisation for Economic Co-operation and Development: OECD）は、30の加盟国から成り、国際経済について協議を行う機関。

結核医療における人間中心のアプローチ
結核体験者のニーズ、置かれた状況、個々の経験を考慮するとともに、知る権利及びそれぞれのニーズに基づき最高品質の医療を受ける権利を尊重することを指す。人間中心のアプローチには、当事者と医療事業者の間に相互信頼とパートナーシップを確立する必要がある。当事者が意見を共有することで、独自の医療計画を策定することができるようになる。人間の尊厳を尊重しながら、より効果的な治療結果を見出す方法である。

結核体験者
この用語には、結核に罹患している人々とその家族、扶養家族、地域社会及び、人々をケアする医療従事者、その他、この病気にかかわりを持つ人が含まれる。

結核患者（原義：結核を持った人々）
この用語には、活動性結核に罹患している人々が含まれる。「結核の人（People with TB）」
という用語は、結核の人が病状だけで定義されるべきではないことを考慮している。この用語は、たとえば、医療現場ではない、地域社会のような場面においては「患者」という単語よりも好ましい場合がある。

結核の予防的治療（TB Preventive therapy: TPT）
結核感染が進行性結核に進行するのを防ぐ薬物治療。

南部アフリカ開発コミュニティ（Southern African Development Community: SADC）
SADC は、ボツワナのハローネに本部を置く政府間組織である。その目標は、アフリカの南部 15 州間における社会経済的協力と統合、ならびに政治的安全保障のための協力をさらに促進することであり、アフリカ連合の役割を補完している。

偏見
ギリシャ語で「印または染み」を意味する言葉から派生した。偏見は、評価を下げる動的なプロセスであり、個人の名誉を大きく貶める。特定の文化や状況のもとでは、ある属性が信用できないまたは価値がないとして他者から定義される。偏見は有効であること、行動や除外といった形の差別につながる。

結核症
結核菌が増殖し、体の一部、通常は肺を攻撃する病気。活動性結核の症状には、衰弱、体重減少、発熱、食欲不振、痰汁などがある。結核の他の症状は、体内のどこで細菌が増殖しているかによって異なる。結核疾患が肺にある場合（肺結核）、つらい咳、胸の痛み、痰血などがある。肺結核症的人は感染性を持ち、結核菌を他の人に感染させることがある。

結核感染
潜在性結核感染とも呼ばれる。結核菌が生息しているが体内で不活発な状態にいることを指す。結核感染者は症状がなく、気分が悪くなることもなく、結核菌を他の人にまき散らすこともないが、通常は感染の検査—ツベルクリン皮膚反応検査または IGRA（インターフェロンガンマ遊離試験）と呼ばれる特別な検査で、陽性反応がでる。世界計画で「結核に感染している」とは、そのような潜在的な結核に感染している人のことを指す。
結核の予防とケア
医療從事者が地域社会に結核サービスを提供する取り組み。この用語は、結核専門家が結核患者の予防、治療、ケアの一から多面を完全に管理controlしているという認識を生み出す可能性がある「結核対策(TB control)」という言葉よりも好ましい。「管理」という用語の使用の可否の検討は、コミュニティや結核体験者の資源や能力を軽視しないためにも効果がある。

持続可能な開発目標（Sustainable Development Goals: SDGs）
現在及び将来にわたる、人々と地球の平和と繁栄のための共通の目標のこと。「持続可能な開発のための 2030 アジェンダ」は、2015 年にすべての国連加盟国によって採択された。その中心には 17 の持続可能な開発目標（SDGs）があり、先進国も発展途上国も含めすべての国が世界規模で連携して、目標達成に向けて、直ちに行動を起こすよう呼びかけている。国際保健のコミュニティは SDG3 が掲げる「すべての年齢のすべての人々の健康的な生活を確保し、福祉を促進させる」という目標の達成に向けて努力をしている。

ユニバーサルヘルスカバレッジ（Universal Health Coverage: UHC）
すべての人々が、経済的な困難を伴うことなく、必要なときに必要な場所で必要な医療サービスにアクセスできること。

結核に関する国連総会ハイレベル会合
2018 年 9 月 26 日にニューヨークの国連総会で国連加盟国が開催した初の結核に関するハイレベル会合。各国の政府及び首脳により承認された政治宣言では、持続可能な開発目標で明記された、世界が結核の流行を 2030 年までに終息させることを確認した。2023 年に、国連加盟国はフォローアップのハイレベル会合を招集し、進捗状況を包括的に見直す予定である。

結核に関する用語とその使用方法を示したガイドブック（英語版）は、ストップ結核パートナーシップにより作成された。以下のアドレスより入手可能である。
序文

「結核終息のための世界計画 2016-2020」が発表されて以来、結核コミュニティは大きなパラダイムシフトの始まりを目指してきた。結核終息に向けた熱意は高まり、結核コミュニティは団結し、政治に目標と現実の間のギャップを埋めるように求めてきた。ストップ結核パートナーシップが高い政治レベルでの行動を呼びかけた結果、2018 年 9 月に結核に関する国連総会ハイレベル会合（UNHLM）が開催され、世界のリーダーたちによって一連の野心的な目標を含む政治宣言が承認されるという成果がもたらされた。

結核の終息に向けた最大のギャップは政治的意思であることは広く知られている。政治的意思とは結核の診断薬、治療薬、新しい技術革新が、それらを最も必要とする人々に確実に届くようにすることだ。そのために、結核対策資金を国連総会ハイレベル会合の資金目標である年間 150 億米ドルにまで増やす必要があります。国家元首と政府の指導力は、政治宣言及び目標を実際に実現するための権力でコミュニティが参画する必要がある。

もう 1 つのパラダイムシフトは、結核対策の計画、実施、モニタリングにおいて、完全なパートナーとして、意思決定を含む分野でコミュニティが参画する必要がある。これを実現するためにやらないければならないことが多く存在するが、このアプローチはすでに結核対応に変革をもたらし始めている。

世界計画で提示されたパラダイムシフトが機能し始めていることを示す試拡もある。WHO の世界結核報告書 2019 では、結核に罹患した人々の 700 万人が 2018 年に結核の診断と治療を受けたことが示されている。前年比で 60 万人の増加であり、1 年間では最大となった。結核の人（People with TB、結核患者）を発見するための国別プログラムへの支援を推進するために、グローバルファンド、ストップ結核パートナーシップ、WHO 及びその他のパートナーが戦略的イニシアチブを展開している。こうしたイニシアチブに支えられ、私たちは医療サービスにアクセスする際に多くの人が直面する障壁を克服してきている。

今回改定された世界計画（2018-2022 年）は、国際社会における先進的な特別委員会が、結核体験者、市民社会及びコミュニティと協働で改定を含めた。2 つの公開の会議のもと、本計画は結核終息に向けた必要なステップを提示する。

国連総会ハイレベル会合における政治宣言の目標を達成することが、今回の世界計画の改
定の原動力であり、2022年までに4,000万人の結核患者を診断及び治療するという重要な目標を掲げている。ストップ結核パートナーシップは、国連総会ハイレベル会合で定められた目標を、国のレベルで捉え直し、すべての国がゴールの位置を把握できるようにした。

この世界計画2018–2022には、あらゆるステークホルダー、パートナー及び国別のプログラムが自分自身のものとして取り組む必要がある。ストップ結核パートナーシップは、2,000を超えるパートナーと連携し、結核予防及び治療の中心をコミュニティのレベルに移すことを呼びかけ、力強い基盤を築き、移民、鉱山労働者、子ども、HIVに感染している人々など、最も脆弱な人々に手を差し伸べ、可能な限り最善の予防、治療及びその他の医療を提供し続ける。

今回改定された世界計画は、2030年までに結核を終息させるための行動を軌道に乗せるよう、私たちを促している。ストップ結核パートナーシップ理事会、事務局長、特別委員会の委員長として、私たちは結核で命を落とす人のない世界で暮らせるよう、必要とされるあらゆる資源を、最後の1オンス、最後の1米ドルまで投入することを約束する。

結核コミュニティは団結し、結核終息を最後まで見届けることを決意している。大胆不敵なステップは成功の最大のチャンスを与えてくれる。結核終息に向けた、それが唯一の希望である。

ストップ結核パートナーシップ理事長、ブラジル保健大臣
ルイス・ヘンリケ・マンデッタ

ストップ結核パートナーシップ副理事長、
RESULTS及びRESULTS教育基金代表
ジョアン・カーター

国際結核肺疾患予防連合、
結核終息のための世界計画2018–2022特別委員会
議長兼科学部長
ポーラ・I・フジワラ

ストップ結核パートナーシップ事務局長
ルシカ・ディティウ
要約

「結核終息のための世界計画 2018-2022：パラダイムシフト」は、結核に関する国連総会ハイレベル会合政治宣言に沿ってコストを考慮に入れて策定された、結核への対応のための計画及びロードマップである。この中では、2018 年 9 月に結核に関する国連総会ハイレベル会合で設定された目標とコミットメントを達成するための、必要な資源の概算を示している。国連ハイレベル会合を受け、ストップ結核パートナーシップ理事会は、「結核終息のための世界計画 2016-2020（2015 年 12 月に作成）」の改定を、世界計画特別委員会の指導のもとで行うよう求めた。「結核終息のための世界計画 2016-2020」は、結核への「従来型」アプローチの全面的な見直し、つまりパラダイムシフトの起こし方を示した。一方、今回この改定では、結核治療と予防の拡大を加速し、新しいツールの研究開発（R&D）への投資を増やすことなど、誰も取り残さないための具体的な取り組みの方法について記している。

世界計画は、結核に関する国連政治宣言で合意された結核目標に向けて、各国がそれぞれの目標を達成するために、強力な政治的リーダーシップが不可欠であることを軸にしている。また、人権に基づく、人間中心のアプローチ、医療における技術革新の加速、新しいツールの導入、研究開発への多大な投資、そして国の力強い対応を訴えている。

結核は、単一の感染性因子による世界最大の死亡原因である。2018 年には、推定 1,000 万人が結核に罹り、推定 150 万人が死亡した。薬剤耐性（DR-）結核は、2018 年に新たに約 50 万人が感染し、多くの国で公衆衛生上の危機、健康安全上の問題を引き起こしている。

しかし、現在治療されているのは、薬剤耐性結核患者の 3 人に 1 人だ。毎年 300 万人以上の結核患者が診断もされずに、結果として効果的な治療もまま置き去りにされている。

世界の年間新規結核患者数の減少率（2017 年から 2018 年にかけて 2% 減少）は、WHO が想定した、2030 年までに結核の流行を終息させるために必要とされる減少率（世界結核終息戦略）に、はるかに及んでいない。結核対策に関する明確な投資計画とパラダイムシフトがなければ、結核に関する国連総会ハイレベル会合の目標や持続可能な開発目標（SDG）で定められた結核終息の目標を、2030 年までに達成することはできない。

世界が結核終息に向けた動きを軌道に乗せるために与えられた時間はわずかだと。世界は、新たに総力を結集しなければならない。
結核に関する国連の政治宣言は、人権に基づく結核対策の実施という重大な責任を表明するだけでなく、各加盟国が2022年までに達成すべき具体的な目標を次のように提示している。

1. 350万人の子ども（15歳未満）を含む、結核を患っている4,000万人の治療を成功させる。
2. 11万5,000人の子どもを含む、薬剤耐性結核患者150万人の治療を成功させる。
3. 5歳未満の子ども400万人、結核体験者と家庭内で接触した2,000万人、HIVを併発している600万人を含め、少なくとも3,000万人に結核の予防的治療を提供する。
4. 結核の予防、診断、治療、その他医療への世界全体の投資を年間130億米ドルに増額する。
5. 結核の研究開発に対する世界全体の投資を年間20億米ドルに増額する。
6. 加盟国は、結核への偏見やあらゆる差別を終わらせるための取り組み、人権に基づく、コミュニティに根差した性別による差別のない統合医療サービスの開発などの目標を達成するために必要な具体的な行動を取ることに注力する。

世界計画は、2018年から2022年の間に、合計778億米ドルが必要であると推定している。

- 結核の予防と治療の提供に、合計650億米ドル。
- 新しいツールの研究開発と基礎科学研究に、合計128億米ドル
  - 新規結核診断技術、医薬品及び少なくとも1種類のワクチンの研究開発に最低108億米ドル、年間平均21億6,000万米ドル。
  - 結核の基礎科学研究に合計20億米ドル、年間平均4億米ドル。

結核終息のための世界計画 2018-2022年の各章は、各国政府及びその他の主要なステークホルダーの課題と優先すべき行動の概要説明から始まる。

第1章では、結核への世界的な取り組みにおけるパラダイムシフトを実現するために必要な5つの根本的な変換を説明している。求められている行動は、以前の世界計画とほんの一貫しているが、国連総会ハイレベル会合で新たに出された宣言に合わせて再編した。この章では、90-(90)-90ターゲットという名の、世界計画で定める人類中心のターゲットについて説明する。また、この章には活動に対するアカウンタビリティを確保するための新たな勧告も含まれている。具体的には、政府と結核のステークホルダーに対し、2030年までに結核を終息させるためのWHOマルチセクトラル・アカウンタビリティ・フレームワーク（MAF-TB）で述べられている取り組みを実施するよう求めている。

第2章では、結核対策による影響とモデル推定（TIME）の最新の結果を用いて、結核に関
する国連総会ハイレベル会合で定められた治療と予防の目標達成に向けて、各国が毎年どのように前進できるかを示している。また、「投資パッケージ」、すなわち、結核治療と予防の目標達成へ向けて、各国が優先的に投資すべき取り組みをパッケージとして提案している。新しいモデル分析により、結核治療を 4,000 万人に、結核予防的治療を 3,000 万人に提供するという目標に到達することで、2020 年の発生率及び死亡率の目標は当初想定よりも 1 年遅れの 2021 年までに達成でき、2030 年までに全世界で結核を終息させるための道に乗りることができることが判明した。この世界計画は、9 つの異なる国の区分に対し、治療と予防の目標モデルを提示している。個別の国目標は、ストップ結核パートナーシップのウェブサイト（http://www.stoptb.org/resources/countrytargets）で詳しく述べている。

第 3 章では、結核医療及びその他のサービスにより、結核リスク集団（Key populations: 脆弱で、疎外され、十分なサービスを受けていない、または結核の感染や発症のリスクがある人）に、手を差し伸べるための構想を提示する。改定版の世界計画では、結核リスク集団が結核対策のガバナンスと意思決定に参加するために、どうすれば彼らが有意義な形で関与し、力を発揮できるようになるかを説明している。また、結核に関する国連総会ハイレベル会合での誓約を満たすため、偏見及びあらゆる形の差別を終息させる取り組みを促進・支援し、結核にかかった人を差別する法律、政策、プログラムの撤廃を含めて、結核リスク集団への働きかけを向上させる政策と手法を作ることを呼びかけている。この章では、特定の結核リスク集団を関与させ、支援するために取るべき行動を示す。

第 4 章では、結核体験者コミュニティに根差した組織、学術関係者及び民間セクターに焦点を当て、これらのパートナーを巻き込むための手法と成功事例を示す。コミュニティに根ざした組織は、コミュニティのレベルで結核医療の計画及び提供をする際に重要な役割を担う。なぜなら、彼らは結核への認識度の向上、見落とされている人々への対応、社会的支援の提供、偏見の軽減、モニタリング及び評価、そして他の不可欠な活動を行う上で最適な立場にある。この章では、コミュニティに根差した取り組み及びコミュニティ主導の取り組みの両方を進めるための手法について説明する。この章ではまた、医療製品メーカー、民間医療システム関係者、医療セクター外の業界、学術関係者、労働組合などの民間セクターに連携する方法についても説明する。

第 5 章では、ユニバーサルヘルスカバレッジ（UHC）の視点から、結核に対処し、社会経済的行動を含む新たな戦略を適用するためには、どのようにすればよいのかを述べている。さらに、国連加盟国が 2019 年の国連総会 UHC ハイレベル会合で出した宣言を実現するため、結核の課題を包括的な手法と統合されたサービス提供を通じ、誰も取り残さない形で解決するための手法を示している。社会経済的な視点では、UHC 実現のためには、生物医
学的取組みを超えて、社会福祉、労働、住居、都市再生、農業、司法、そして文化的指導者や伝統的な治療者など、多岐にわたるステークホルダーを巻き込む必要がある。

第 6 章では、研究開発を進め、新たな結核対策ツール、特に新しい診断薬、治療薬、ワクチンへのアクセスを確保するために行う優先的実施事項を明らかにする。世界計画によれば、結核の研究開発においては、既存方法では資金が足りない。そこで、この章では、新しいツールの研究開発への投資に遲延が生じた場合のコストについて説明する。その上で、国連加盟国に対し、結核に関する研究開発への投資のギャップを埋めるため、2017 年に約 7 億米ドルであった投資額を 2022 年に年間 20 億米ドル以上にまで増加させるよう呼びかけている。

そして、研究開発への新たな投資を導くための、コストを考慮に入れたフレームワークを、結核に関する研究開発のための世界戦略（WHO）に沿った形で提示する。ここでは、資金援助に加えて、基礎科学研究への投資も全世界で年間 4 億米ドルに増加する必要があると試算している。同時に、各国が結核の研究開発資金のギャップを埋める際の、妥当な負担配分に関する新しいフレームワークについても説明している。すぐに開始できる（off the shelf）プロジェクトのモデルについても触れ、初めて掲載された。これらのプロジェクトはすぐに開始することができ、新しい診断薬、治療薬やワクチンの開発に大きく貢献できることを提唱している。基礎科学研究の推進、オベレショナルリサーチを通じた新規ツール提供の最適化、新規デジタルツールの実用化及び研究開発全般に渡って進めやすい環境づくりを行うために必要な取り組みと優先順位についても述べている。新しいツールへのアクセスを確保するための、アドボカシーにおける優先事項、コミュニティ参加のための最善策、そして人権に基づいたアクセス原則の評価についても言及している。

第 7 章では、結核の予防と治療のための資金を毎年 130 億米ドルに増やし、結核の研究開発資金を毎年 20 億米ドル以上に増やすという国連加盟国のコミットメントを果たすための、最新の計画を示す。この章では、結核に関する国連総会ハイレベル会合で定められた、結核の治療と予防に関する世界目標を達成するために必要とされる 1 年あたりの資源について新たな予測を示す。結核予防と治療に必要な資源ニーズは、国の所得区分、WHO の地域区分、世界計画による国の区分、グローバルファンドの支援対象、BRICS 加盟国といった国のグループ毎に示されている。結核の予防と治療に関する各国の必要資源量についての情報は、次のサイトから入手できる（http://www.stoptb.org/resources/countrytargets）。最新の投資計画は、2030 年までに結核のまん延を終わらせるために、各国が治療と予防の目標を達成し、研究開発パイプラインを軌道に乗せることができるようにすることを考慮して、設計されている。最新の試算では、各国が世界計画の活動に対して行う 1 米ドルの投資につき、44 米ドルの効果がもたらされること、そしてこのプログラムがすべて実施さ
れれば、世界全体で 7,110 億米ドルの経済的利益がもたらされることが示されている。

世界計画（2018–2022）の投資シナリオに資金を提供することで：
1. 国連総会ハイレベル会合で設定された 2022 年までの治療目標に到達できる。
2. 世界結核終息戦略における 2020 年の中間目標は、1 年後の 2021 年に達成される。
3. 2025 年の中間目標と 2030 年までに結核を終息させるという SDGs の目標を達成するための取り組みを軌道に乗せることができる。
4. 350 万人の子どもと 150 万人の薬剤耐性結核患者を含めた 4,000 万人が結核の治療を、3,000 万人以上が結核予防的治療を受けることで、結核による死者が 150 万人減少し、障がい調整生命年（DALY）を 4,800 万年分回避することができる。
5. 2030 年までに結核を終息させるために必要な新たなツールが、研究開発によってすぐに登場することができる。一方、結核の研究開発に対する資金提供の増額が 5 年遅れれば、それにより死亡者が約 200 万人増加し、結核発病者が 1,390 万人増加することになる。
はじめに

結核（TB）は、ヒト型結核菌（Mycobacterium tuberculosis）によって空気感染が引き起こされる感染症であり、世界全体で見ると単一の感染性因子による最大の死因である。2018年には、推定1,000万人が結核に罹り、150万人が命を失った。1薬剤耐性（DR-）結核は、2018年に新たに約50万人に影響を及ぼし、多くの国で公衆衛生上の危機と健康安全上のリスクをもたらしている。しかし、推計によると、現在治療されているのは薬剤耐性結核患者の3人に1人である。診断されていない結核患者は、毎年300万人を超え、効果的な治療が行われずに置き去りになっていることをどうするかが今後の課題だ。

世界の結核対策を軌道に乗せる必要がある。

2017年から2018年にかけて結核に罹った人の数は2%減少したが、これは国連の持続可能な開発目標（SDGs）とWHOの結核対策目標（ボックス0.1）を達成するために必要な進捗状況のベースにはほど遠いものだ。いくつかの重要な分野で進歩があったが、人々がその時点における最高のツールを使用した高品質の結核予防とケアに確実にアクセスできるようにするため、そして最新の診断技術、ワクチン及び治療方針の開発に必須となる技術革新の分野に投資するために、より多くの資源が必要である。現在の進歩の速度では、世界は今世紀の終わりまでに結核を終息させることはできない。

国連総会ハイレベル会合及びそれに付随する政治宣言は、協調的なアドポカシーとハイレベルな政治活動の成果であった。2016年9月、当時の議長であったアーロン・モトソアレディ（当時の南アフリカ保健大臣）の主導で、ストップ結核パートナーシップ理事会は、各国首脳による行動がとてつもなく重要であるため、結核に関する国連総会ハイレベル会合の開催が必要であることを呼びかけた。そして、翌年11月には、WHOによって、結核終息に向けた世界閣僚級会合が開かれた。ロシアで開催された会合の中で、ウラジーミル・プーチン大統領が演説をし、結核終息のためのモスクワ宣言が採択された。

2018年3月にインドのデリーで開催されたストップ結核パートナーシップ理事会に先立って行われたイベントにおいては、ナレンドラ・モディ首相が結核終息のため一層の努力を求めるスピーチを行った。この中で、モディ首相は、世界の目標より早く2025年までにインドでの結核の終息を実現させることを約束した。2018年6月、コミュニティのニーズを把握するために対話式の市民社会ヒアリングが開かれた。そこから出された意見の多くを最終的な政治宣言に組み込んだ。

結核に関する国連総会ハイレベル会合までの数か月間、世界中の市民社会と結核経験者のコミュニティが、結核に関する政治宣言で採択されるその他の政治的誓約に加え、治療と予防に関する具体的な目標を政治宣言内に盛り込むよう提唱した。

結核を終息させるには喫緊の対応が必要であるとはいえ、まだ望みはある。近年では、研究開発（R&D）により新しい診断技術が導入され、結核の分野において、主要な抗生物質に対する耐性検査にかかる時間が短縮された。さらに、薬剤耐性結核用の医薬品が初めて導入された上、新しいワクチンの研究はここ数十年で最も期待できる段階に達している。世界エイズ・結核・マラリア対策基金（グローバル・ファンド）は、2020年から2022年までの期間において、ドナーから140億ドルの資金提供の誓約を取り付けた。前回の世界計画を作成した後に、ユニバーサルヘルスケアレジ（UHC）の達成に向けて強化された世界的な取り組みや、「健康な生活とすべての人々の幸福のためのグローバル行動計画」を主導する医療機関との更なる連携など、世界的な健康目標を達成するための新たな動きも始まっている。また、結核の回復者と結核を体験した人びとは、より組織化されている。結核体験者の権利に関する2019年の宣言や、結核の回復者が結核ステークホルダーに対して「私たち抜きで、私たちのことは、何もしないでほしい」という声明の発出を通じて、

6 Survivors Statement, presented in the Opening Ceremony of the 50th Union World Conference on Lung Health by
新しい規範づくりが期待されている。私たちは、結核を終わらせるためにこの動きを加速させねばならない。

改定版の結核終息のための世界計画2018-2022は、過去5年間の進捗状況を反映しており、国連総会ハイレベル会合で設定された2022年までのコミットメントの達成を支援することを目的としている。力強さを増した世界規模のアドポリシーをもとに、世界計画で示された優先すべき行動を実施し、必要な資金、各国政府や結核プログラムを動員することで、私たちはSDGsに沿って2030年までに結核を終息させるための取り組みを軌道に乗せることができる。

ボックス 0.1: WHOの結核終息戦略

2014年に世界保健会議で採択された結核終息戦略は、世界的な結核流行を終わらせるための20年間の戦略である。戦略では、SDGsによって示された、UHCと病気からの社会的保護を達成することなどに焦点をあてている。結核終息戦略は結核を減らすため、また結核により患者の家族が莫大な費用を負担することを防ぐために、2035年までに2015年と比べて死亡率を95%、年間の結核発症者数を90%減少させるという目標設定をした。これからの戦略目標を達成するための進捗状況を評価するために、暫定的な中間目標を2020年、2025年、2030年に設定している。世界計画はSDGsと連携し、WHOの結核終息戦略を補足し、結核終息戦略で定められた各国政府やその他のステークホルダーが結核流行を終わらせるための取り組みに優先順位を付ける働きをしている。

すべてのステークホルダーは、結核の終息により大きな役割を果たす必要がある。世界の結核患者の半数以上、薬剤耐性結核患者の3分の2がブラジル、ロシア、インディ、中国、南アフリカ（BRICS）及びその他の新興経済国にいると考えられている。結核終息戦略によって設定された世界の中間目標を満たすためには、これらの国々、特にBRICSによる取り組みが重要である。

図0.1:結核に関する国連総会ハイレベル会合で定められた、鍵となる目標の概要

国連加盟国は、2022年までに次の主要な目標を達成すると約束

1. 5歳未満の子ども350万人を含む、4,000万人の結核の治療を実施する。
2. 11万5,000人の子どもを含む、150万人の薬剤耐性結核の治療を実施する。
3. 5歳未満の子ども400万人を含む、少なくとも3,000万人に結核予防的治療を提供する。
4. 結核の予防、診断、治療等の医療に対する全世界の投資を年間130億米ドルに増額する。
5. 結核の研究開発に対する全世界の投資を年間20億米ドルに増額する。
6. 偏見やあらゆる差別の根絶を促進、支援する。
7. 人権に基づく、統合された、人間中心の、コミュニティに根差した、ジェンダー対応型の医療サービス

ビスを開発する。

8. 安全、効果的、公平で、安価な新規ワクチンを可能な限り早く提供する。

9. マルチセクトラル・アカウンタビリティ・フレームワークの開発と導入を継続的に行う。

10. 2020年に進捗状況を報告し、2023年のハイレベル会合で国家元首及び政府により包括的な検証を受ける。

この目的を達成するために、各国は関連するすべてのステークホルダー、特に政治宣言で明示された次のセクターを巻き込むことで誰一人取り残さないという国連総会ハイレベル会合における誓約を果たすべきである。

- 保健・栄養
- 財政
- 労働
- 社会的保護
- 教育
- 科学技術
- 司法
- 農業
- 環境
- 住居
- 貿易
- 開発
図 0.2：行動のスケジュール

<table>
<thead>
<tr>
<th>年</th>
<th>イベント</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>WHO 結核終息戦略策定</td>
</tr>
<tr>
<td>2015</td>
<td>国連 SDGs 採択</td>
</tr>
<tr>
<td>2017</td>
<td>持続可能な開発時代の結核終息に関する WHO グローバル閣僚会議</td>
</tr>
<tr>
<td>2018</td>
<td>結核に関する国連総会ハイレベル会合</td>
</tr>
<tr>
<td>2019</td>
<td>グローバルファンド増資会合：結核終息のための世界計画の更新</td>
</tr>
<tr>
<td>2020</td>
<td>結核終息戦略の中間目標達成期限：国連総会ハイレベル会合における結核に関する誓約へ向けた進捗に関する国連事務総長報告</td>
</tr>
<tr>
<td>2022</td>
<td>国連総会ハイレベル会合の目標達成</td>
</tr>
<tr>
<td>2025</td>
<td>結核終息戦略の中間目標の達成期限</td>
</tr>
<tr>
<td>2030</td>
<td>SDGs 達成期限；結核終息戦略の中間目標の達成期限</td>
</tr>
<tr>
<td>2035</td>
<td>結核終息戦略目標の期限</td>
</tr>
</tbody>
</table>

ボックス 0.2：結核と持続可能な開発目標

SDGs の 17 の目標は、世界の開発協力における優先事項に焦点をあてており、今後 10 年間に渡り、ほとんどの国で優先事項となる事柄についての指針となる。2030 年までに結核のまん延を終わらせること、「あらゆる年齢のすべての人々の健康的な生活を確保し、福祉を促進する」という SDG 3 の中に定められた目標である。

SDGs の目標は、1 つの目標への進展が他の目標への進展にどのように役立つかを理解した上で、包括的に取り組んだ場合にのみ達成可能である。
結核のまん延を終わらせることが複数の SDG のゴール達成と密接に関連している一方、それ以外の SDG については、達成への取り組みにおいて、結核対策を組み込むことで、SDGs の目標 3 の中で明記されている結核の終息を早められるものがある。

結核には、貧困（目標 1）及び食糧安全保障（目標 2）との間に多様な強いつながりがある。また、全世界で結核により失われる労働時間をなくすことで、持続可能な経済成長と完全かつ生産的な雇用（目標 8）の達成へ向けて、120 億米ドルの効果が得られる。目標 17 では、国内資源の動員を強化し、追加の財源を複数見つけるよう求めている。

また、先進国に対しては、国民総所得（GNI）の 0.7%を ODA 支出に充てるという誓約を完全に実施するよう求めている。経済が成長すれば、生活条件が改善され（目標 11）、平等に保健治療サービスを受けける権利が向上する（目標 16）。これらのことは、結核のまん延を遅らせるのに役立つ。世界がジェンダーの平等（目標 5）を推進するために法の強制力を高め、差別的慣行を排除することで不平等を減らした場合（目標 10）、人々、とりわけ経済的不平等、家庭の責任、文化的障壁によりこれまでケアを受けられなかった人たちにとって、結核の診断と治療をより簡単に受けられることにつながる。

気候変動対策を実施することで（目標 13）、人口集団全体に対する栄養の悪化その他の負の結果を防ぎ、多くの人が、混雑した都市のように結核の感染にとって好都合な環境へと移住する必要を減らすことができる。
第1章 結核の終息に向けたパラダイムシフト

第1節 概要

WHOの結核終息戦略及びSDGsに沿って結核を終息させるために、各国は、結核に関する国連政治宣言の中にある目標を達成し誓約を果たす必要がある。この世界計画は、そのための行動について道筋を示すものである。

これを実現するため、私たちは結核終息に向けた取り組みをより加速させなければならない。2018年9月の結核に関する国連総会ハイレベル会合において、結核終息戦略とSDGsの目的を達成するための政策と、アジェンダを織り込んだ初の国連政治宣言を行った。結核のまま延を終息させる新たな取り組みの一環として、この宣言には各国が2022年までに達成すべき具体的な目標や政府が約束した行動が含まれている。結核を終息させるという究極の目標の下、政治宣言で述べられた今後数年間にわたる人間中心の取り組みを存分に行うため、ここぞ包括的で部門を超えて尽力し、拠出宣言された金額を全額投資することが必要である。改定版世界計画におけるモデル分析研究によれば、国連総会ハイレベル会合の予防と治療に関する誓約が2022年までに守られれば、世界は結核終息への歩みを軌道に乗せることができるだろう。

世界計画は、90-(90)-90ターゲット：人間を中心とした次の3つの目標に注力する。
1 結核の治療と予防を、必要とする人の90%以上に届ける
2 結核リスク集団の90%以上に手を差し伸べる
3 結核と診断された人の治療成功率を90%以上にし、予防的治療対象者の治療成功率を90%以上まで向上させる

第2節 優先すべき行動

結核を終息させるためには、結核回復者、結核の体験者のコミュニティ、市民社会、民間セクターと国際パートナー、そして各国政府の積極的な参画とともに次のことことが不可欠である。

ある。

- 結核終息に向けた各国の支援を公にし、薬剤感受性（DS-）結核患者にも薬剤耐性（DR-）結核患者にも、大人にも子どもにも手を差し伸べるという世界的な治療や予防の目標に対する各国の投資配分をはじめ、90-(90)-90 ターゲットを達成して国連総会ハイレベル会合の宣言を履行するために、必要な資源をすべて動員すること
- 結核終息にとって重要なパラダイムシフトのため、世界計画に示す 5 つの抜本的な変化を起こすこと
  1. 定期的な進捗状況の報告、確認、確実な履行を含む、包括的、分野横断的、そして、アカウンタビリティのあるリーダーシップを示すこと
  2. 結核への対応を、人権にもとづいた人間中心のものに変容させ、結核リスク集団に届けられるように積極的に活動を行うこと
  3. 結核対策プログラム等において、研究開発を加速し、技術革新を促進すること
  4. 結核対策プログラムや活動が、誰一人取り残さない強靭な保健システムにより確実に支えられるようにすること
  5. 利用できる新しく革新的な投資システムはすべて利用し、結核の終息に必要な資金として投入すること
- 結核のデータを解析し、大人、子ども、男性、女性、結核リスク集団それぞれでモニタリングができるようにすること
- 国連総会ハイレベル会合における宣言を遂行するためのアカウンタビリティも担うために、国際的でマルチセクトラルにわたる仕組みを確立、維持すること

第3節 人間中心の国際的なターゲット：90-(90)-90 ターゲット

私たちは結核終息に向けて立ち上がりなければならない。結核を患った人のうち完治する人はわずか 50％である。世界計画の達成のため、現状との受け入れがたいギャップに目を向けなければならない。

2016 年に国連総会ハイレベル会合でなされた HIV に関する政治宣言では、90-(90)-90 ターゲットに言及し、さらに結核に関する政治宣言では、成人と子ども両方の結核を見つ

---

9 Political Declaration of the High-Level Meeting of the United Nations General Assembly on the Fight Against
た治療するという具体的な誓約を加えた。モデル分析研究によれば、2022年までに90-(90)-90ターゲットを達成して、政治宣言における誓約を果たすことができれば、結核終息戦略が示す、結核の発生と死亡に関する2025年の中間目標達成に向けた取り組みを軌道に乗せることができると。

図 1.1：90-(90)-90ターゲット

ターゲット1　結核の治療と予防を必要とする人の90%以上に届ける
診療・治療を受ける人の数を増やすことで、各国は病気の拡散を抑止できる。それには、結核患者の90%及び予防的治療が必要な人の90%に、初期の発見と迅速な治療を提供することが必要である。

積極的患者発見として知られるのは、結核のリスクにさらされている人に積極的に働きかけて、系統的なふるい分け検査を行い、診断と適切なケアを施すことである。これは、結核サービスを利用できていない何百万の人々に手を差し伸べるための重要な手段である。積極的患者発見には、地域の状況を考慮しながら、地域のアウトリーチ活動の支援、保健システムの強化、HIV・糖尿病・栄養など他の疾病と結核スクリーニングの統合、既存のツールと資源の最適化、成功したパイロット事業の規模拡大、政府による資金と支援を確保することが必要である。⑪

結核を終息させるには、予防に対してさらなる注力が必要だ。結核のリスクのある人は倫理的観点から人種と性別を問わず、誰もが正しい予防的治療を受ける権利がある。2018年、WHOはガイドラインを改め、結核予防を必要とする人が、きちんと恩恵を受けられるよう

---


⑩ Preventive therapy treats TB infection before it progresses to TB disease.

に更なる努力が必要だと強く勧告した。12

すでに結核発症の過程にあるなど、緊急に結核予防を必要とする人たちの多くは HIV 感染者、幼児、親族に結核患者のいる子ども、珪肺などリスクの高い病気を患う人で、結核の組織的なスクリーニングと予防的治療が必要である。

ターゲット 2 脆弱でリスクにさらされ、治療と予防を必要とする人のうちの 90%に手を差し伸べる
これはターゲット 1 を補完するものである。すべての人たちにも平等に手を差し伸べることで、感染の恐れのある患者に安価な治療と予防を施すことも必要だ。世界計画は各国が地域と協働し適切な結核予防対策を導入すること、その過程の調査・見直しをきちんと国民に周知することが必要である。

ターゲット 3 結核と診断された人の治療成功率を 90%以上、予防的治療対象者の治療成功率を 90%以上にする
これは、薬剤感受性結核、薬剤耐性結核、もしくは予防的治療を受けたすべての人を対象にする。現在、結核患者の中には、治療を開始していないところが、自分の状態もわからていない人も多い。世界計画では、参加国に対して、すべての結核患者が必要な治療内容、過去に予防的治療を受けた人の情報、治療の結果のアカウンタビリティ、国別のレポート、年齢別の分析を報告するよう提唱している。そのためにも、各国はすべての人が等しく治療を受けられるよう包括的な支援を行う必要がある。

ボックス 1.1: FIND. TREAT. ALL. #ENDTB
結核予防のための 90-(90)-90 ターゲットの実施を推進するため、WHO、ストップ結核パートナーシップ、及びグローバルファンドは FIND. TREAT. ALL. #ENDTB、という共同イニシアチブを立ち上げた。このイニシアチブには、市民社会、結核体験者コミュニティと開発資金パートナーも含まれ、すべての成人、子どもの結核患者へ届くために尽力することを求めている。年間何百万人になる、質の高い結核医療の機会を逸してきた人が結核医療にアクセスできるようにするのが、このイニシアチブにおける優先事項である。13

第4節 パラダイムシフト

国連総会ハイレベル会合の政治宣言をもとに、世界計画では、結核終息のために5つの基礎改革が必要だと示している。これは、各国の90-(90)-90ターゲットの達成につながる14。

1. 定期的な報告と見直し、強い責任感をもったリーダーシップ
すべてのステークホルダーが、結核終息私たちのゴールであると理解する必要がある。結核終息向けた取り組みはHIVやポリオと同様に長期戦である。多くの資源の投資が必要であることを、各国の指導者が国民に伝えることなくして、結核終息戦略は実現できない。指導者たちは、結核終息に強い責任を持たねばならない。

結核に関する国連総会ハイレベル会合の政治宣言の中で各国は次のことを誓約している。

| 誓約1 | 2022年に350万人の子どもを含む4,000万人を治療する。
| 誓約2 | 2020年に11万5,000人の子どもを含む150万人の薬剤感受性結核患者の治療を行う。
| 誓約3 | 2022年までに5歳以下の子ども400万人、結核感染者の家族2,000万人、HIV感染者600万人を含む最低3,000万人に予防的治療を実施する。

誓約の達成には、各国政府と地方自治体の協働が必要である。政治的な責任を通じて、各国の省庁、特に財政や労働に係る省庁が取り組みを担うべきだ。また、政府、社会、コミュニティ、民間セクター、社会的保護、司法の観点を鑑み、貧困削減や働き方の改革などの分野との連携も必要である。

2. 結核リスク集団へ、公平で、人権に根ざした人間中心の対応へ
人権に根ざした結核対応は、国際法、各地域の法律及び国内法により保障されている。これらの法律により、世界のすべての人は、高水準の医療を受ける権利、差別されない権利、プライバシーの権利、移動の自由、科学の恩恵を受ける権利を有している。人権に関する法律は、政府及び民間セクターの法的義務も定めている。

---

14 The previous edition of the Global Plan identified eight fundamental changes that must be made to produce the paradigm shift needed to end TB. While the aims remain the same, these changes have been revised in the current edition to align with the key commitments made in the UNHLM Political Declaration on TB.
人権に基づいて結核終息に向けた活動を行うため、各国は以下のことを実施する。
1. 結核患者への差別を禁止する
2. 人が自分の結核の状態（感染・発病）を認識し、金銭的、物的障壁を乗り越えて診療と治療を受ける権利を与える
3. 保健医療政策作成時における、結核体験者の参画を保証する
4. 結核患者が、自分の権利を知ることができるよう新たな仕組みを導入する
5. 結核患者のプライバシーを保護する

ジェンダー平等等に基づく結核への取り組みは、性差別だけでなく、貧しい健康状態を生みだしている、社会的・法的・文化的・地域的ななどの根本的な課題を解決することができる。ジェンダーへの取り組みは、結核の新たな事例を防ぎ、性別や年齢にかかわらずすべての人が健康でいられる権利を強化することにつながる。

これらの保護を憲法や法律に加えるべきである。もしそれが不可能であれば、それらの保護は法的権利として国や地域の結核政策に組み込まれなければならない。

結核患者及び結核体験者を代表する団体は、公平で人権に根ざした人間中心の取り組みへのパラダイムシフトを実施する必要がある。結核体験者のコミュニティは意思決定におけるすべての場面に参加し、医療を提供する組織の理事を務め、結核に関するあらゆる議論の場において平等かつ貴重なパートナーとしてその経験と知識を共有できるようにしなければならない。各地域は代表を選ぶ際やメディアと協働する際は、議論をした上で、後押しをしないといけない。

結核患者とそのコミュニティは、結核終息のための戦略の構想で主要な役割を与えられる必要がある。地域の情報を共有するのに重大な役割を果たしているソーシャルメディアなどの新しいツールは、将来的には伝統的な疫学調査にも戦略的に使われるであろう。

3. 研究開発を加速させ、結核プログラムにおける革新を進める

パラダイムシフトには新しい医療と予防接種、ワクチン、そして流行病としての結核を終息させるプログラムが必要である。政府と研究機関は結核研究に注力し、さらなる進歩を可能にする環境づくりの歩を進めなくてはならない。新規結核ツールへの公平なアクセスを確保するため、結核プログラムは、新しい薬、診断技術やワクチンを速やかかつ効率的に展開する必要がある。

各国首脳は結核と戦うために必要な政策を変更し、資源を割り当て、影響力のある活動を導入する必要がある。プログラムは、各地区のニーズに適応し、結核のホットスポットや
貧困地域など、より重点的な対策が必要な場所を特定して行うべきである。ハイリスクの地域でプログラムを実施することで、人命救済だけでなく、結核の初期段階での探知と阻止ができるからだ。より迅速な薬剤感受性と薬剤耐性結核の治療の為、過去のやり方に縛られる必要はない。ソーシャルメディアやmHealthを利用した革新的な方法を見つける必要がある。地域でのプログラムは、脆弱な人たちを見つけ、革新的な治療法を見出す潜在能力がある必要がある。これらの取り組みには質の高い情報収集、リアルタイムでのモニタリング、そして、民間セクターの知見が必要になる。

4. 誰一人取り残さない強靱な保健システムに支えられた結核プログラムやその他の活動の保証

強靱な保健システムは結核の予防、治療の需要と供給のギャップを埋めるのに不可欠である。縦割りの国内保健システムにおいてしばしばみられる、結核プログラムへの低い順位付けはやめなくてはならない。新しい結核プログラムにおいては、HIVや母子健康のプロジェクトと協調すべきであり、結核医療は、UHCと新たな保健資金調達モデルという観点において、一次医療（プライマリーヘルスケア）を通じて届けられるべきである。

各国は、すべての人が結核治療を受けられる人間中心のプログラムを作成するため、結核回復者、結核体験者のコミュニティ、そして、コミュニティのリーダーをプログラム作成の過程に参画させる必要がある。

結核終息に向けた取り組みには、ワンヘルスアプローチとして肺外結核や人畜共通感染症などの治療も含めるべきである。この方法は、人類の健康が他の動物や自然環境とつながっているという認識に基づいている。結核終息に携わる人財資源を増やすことで、よりよいプログラム策定とデータ集積と分析の向上が可能になる。

医療介入だけでは、結核終息への取り組みは不十分である。居住環境、衛生環境の向上、貧困の削減とUHC、障がい者への保障、職場での保護等社会的セーフティーネットの強化、そして、結核治療のために必要となる莫大な個人負担を減少できるプログラムは、結核患者の発症と死亡者数の減少につながる。しかし、医療以外の活動は、通常、実施及び結核発生数に直接影響を与えるまでに何年もかかるので、計画及び投資を持ってはいられない。

5. あらゆる手段を駆使した結核終息への必要な資金投入

結核終息には安定した資金投入が必要だ。結核に関する国連総会ハイレベル会合の政治宣言において、各国は年間130億米ドルの支援を誓約した。地域のシステムに投資等の資金を増やすためには、大きな変更が随時必要である。
結核プログラムで予算を増大させる、もしくは投資を前倒しさせるための説得力のあるモデルケースを作り、それを基に、資源を有効活用し、投資の優先順位を定め、他のプログラムと連携して資源を確保しなければならない。インセンティブを持った革新的な資金調達手法は、結核への資源を増加させる機会になる。結果重視の資金調達手法が多くの国で展開されており、得られた具体的な成果により、資金提供者や運用組織にも財政的インセンティブを与えることでよりよい結果を出している。結核プログラムもそのような先駆的な財政イニシアチブの一部にならなくてはいけない。

結核に対する公共セクターの対応能力を引き続き強化することに加え、ビジネス、民間セクターの保健医療事業者をパートナーとして巻き込むことで、消費者に魅力あるアプローチやソーシャルビジネスモデルを実施し、多くの人に主要な医療サービスを提供することができる。社会健康保険の進化と金融メカニズムの融合が進んでいる今、結核プログラムはそれらのイニシアチブと積極的に連携し、プログラムを統合することが必要になる。

第5節 結核終息のための経済施策

結核終息のためには経済施策が不可欠である。KPMGの分析によれば、今後の2015年から2030年の間に、結核による死によって、世界で9兆8300億ドルの経済損失が発生する。15 結核の治療はそれよりも安く、効果的である。効果的な治療で、平均して人の生命を20年延長することができ、それにより莫大な経済的利益を生み出すことができる16。

国連のSDGsに関するハイレベルパネルによると、結核医療を含めて行われる1米ドルの投資は、30米ドル分の経済的利益を生み出す17。他の調査では115米ドルとも言われている18。結核終息によりもたらされる経済的利益は費用を大きく上回り、持続可能な開発目標の達成においてとても重要である。

世界計画で示された投資パッケージは、個別の国において最大限の投資効果が得るように

---

第6節　進捗確認

ストップ結核パートナーシップは、90-(90)-90 ターゲットと世界計画で定めた研究開発と資金調達の中間目標への進捗を確認している。2017年に発行された最初のレポートを基準としており、このレポートには2015年からの当時最新データが使われている。

2018年に各国政府がWHOに報告したデータによると、世界のわずか68%の結核患者と30%の薬剤耐性結核患者だが、結核と診断され、治療を開始できる。子どもでみると、さらにその率は低い。結核予防的治療を必要とする人の大半は、適切な治療を受けられず、5歳未満の子どもでは、結核予防的治療を受けられたのは27%のみである。家庭内感染の予防的治療を受けた5歳以上の子どもは、2017年から2018年にかけて30%減少している。リスク集団における結核ケア・サービスの利用と実態を理解するためには、未だに満たされるべき大きなデータの満がある。世界全体で見ても治療成功率は、薬剤感受性結核で80%、薬剤耐性結核では55%であった。

各国はデータを読み解き、自らの国で成人、子ども、男性、女性、結核リスク集団がどうなっているのかを吟味しなければならない。世界計画では、各国に地域社会と協働し、次のセクションで述べるような経過重視の目標を設定している。

ボックス1.2：南アフリカ：進行中のパラダイムシフト

一部の国では、すでにパラダイムシフトが可能であることが示されている。世界で最も結核罹患率の高い国の1つである南アフリカは、罹患率を劇的に引き下げるために、複数年の包括的なキャンペーンに乗り出した。

過去数年間、南アフリカは多くの大胆な結核対策を講じてきた。そのいくつかを以下で説明する：

- 南アフリカは、結核の初期診断ツールとしてGeneXpertを使用し、顕微鏡検査を迅速な分子検査に完全に置き換えた最初の国となった。
- Gene Xpertへの置き換えにより、診断時にすべての患者の結核菌について薬剤耐性の有無が確定した。

に特定され、正しい治療計画を迅速に開始できるようになった。

南アフリカは、リファンピシン耐性（RR-）結核と診断されたほとんどの人に、世界で初めて新しい抗結核薬ベダキリンを投与した。これにより、注射薬の使用が大きく削減され、国際的な成功事例となった。

南アフリカは結核予防的治療を最も早く拡大させた。2017年の世界の結核予防的治療数の約40％を南アフリカ一国が占めた。

南アフリカはHIVと結核の併発において、結核を予防、診断、治療するための新しくより効果的なツールの研究開発の分野においても、重要な役割を果たしている。南アフリカの研究者は、初期の研究から大規模な臨床試験に至るまで、新しいツールの開発における世界的な取り組みに大きく貢献している。南アフリカで急速な進展が見られたのはいくつかの理由があるが、特筆すべきは、保健大臣の主導でキャンペーンを実施し、大統領、副大統領、国会も取り組みを支援した。つまり、政府の高い政治的関与があったことが要因である。

第7節 結核への誓約を果たすためのアカウンタビリティ

第1項 国連総会ハイレベル会合におけるアカウンタビリティに関する誓約

結核への緊急対応のため、国連加盟国は、それぞれの責任を果たすための行動を開始すると約束した。改定版の世界計画は、結核に関する国連総会ハイレベル会合で決められた、より高度な行動、モニタリング、そして報告のシステムを確立することで、世界的、地域的、国家的な結核の取り組みの進捗を確認するよう、加盟国に促している。

第2項 アカウンタビリティに必須となる結核対策マルチセクトラル・アカウンタビリティ枠組（MAF-TB）

アカウンタビリティの維持は、複雑な取り組みである。結核対応のどの部分に焦点を合わせる必要があるのかを特定するため、WHO は、説明・議論するための共通のフレームワークを、パートナーと連携しながら開発するよう要望を受けた。これを踏まえて策定されたWHO の「2030 年までに結核を終息させるための進歩を加速させるためのマルチセクトラ

MAF-TBでは、包括的かつ効果的なアカウンタビリティへのアプローチを築き上げるための概要とその分析を示している。この枠組みは、包括的な政治的宣言を果たすために経済界や政府の広範なセクター（健康と栄養・金融・労働・社会的保護・教育・科学技術・司法・農業・環境・住宅・貿易・開発）が関与したものでなければならない。

MAF-TBの重大な要素はコミットメント、行動、進捗状況の観察と報告で、観察内容は評価と今後の行動の指標とする。これらはMAF-TBの資料で詳細に述べられている。23

ボックス 1.3: インド：結核終息へ向けた野心的な政治的宣言24

世界で結核に罹患している人の4人に1人が住んでいるインドは、最近、国内の結核に対する取り組みの軌道を変えた。2018年3月13日の歴史的スピーチで、ナレンドラ・モディ首相は、SDGの目標より早く、2025年までにインドで結核を終息させるというビジョンを明確に述べた。この宣言により、いくつかの新たなステップが生まれた。

- 野心的な国家戦略計画の中で、十分な資金を提供することを約束した。
- 結核に対する資金が国内予算から3〜4倍多く割り当てられるようになった。
- 結核治療と民間セクターで診断された結核の報告を改善するため、複数の措置が取られた。過去数年間で、民間セクターが診断と治療を受けた数十万人の結核患者の届け出をしており、国内の結核患者の発見と届け出の大幅な増加につながっている。2018年には、2017年と比べて結核患者の報告が3万件増加した。
- インドは、結核の届け出において、州や地区ごとに利用できるインターネットベースのライブ情報

---

システムを導入し、パブリックドメインを通じてリアルタイムに情報更新をできるようにした唯一の国である。このシステムは「Nikshay」と呼ばれ、研究所、医療現場、民間セクターの保健医療事業者及び報告や接触者調査などの公衆衛生機関をつなぐ、患者管理・追跡システムとしても機能する。
- 結核治療を受けている人は、毎月、個人口座に栄養・社会的支援金を直接送金してもらうことができる。
- 首相府、保健大臣、州首相、国会議員は、各州及び地区ごとに設定された人間中心の簡単な達成目標を通じて、結核対策のモニタリングを行った。
- インドが結核終息のために取っている野心的な政策は、他の国々が自国の状況に適用できる実用的なモデルを提示した。

図 1.2：マルチセクトラル・アカウンタビリティ・枠組み（MAF-TB）に不可欠な要素

第8節 アカウンタビリティの保持

アカウンタビリティ保持のため、様々なステークホルダーが世界規模と地域規模の両方に

25 Nikshay dashboard. https://reports.nikshay.in/
おいて早急に行動を起こす必要がある。具体的には、誓約を果たすための国際的取り組みの進展を評価するための、国際的なマルチセクトラル・メカニズムが必要である。誓約が果たされ、目標が達成されることを確実なものとするためにも、政府、結核体験者コミュニティ、より広い意味の市民社会、支援者やパートナーは相互に共通の利害を認識する必要がある。

関係するコミュニティや、幅広い市民社会からの積極的な参加のもと、各国政府は以下のステップを取る必要がある。

ステップ1 必要に応じて資金を調達し、国家の結核対策戦略・政策・法律を更新・実施することで、世界的な結核治療及び予防に関する誓約に対して相応の政治的コミットメント及び資金調達を果たす。

ステップ2 国のマルチセクトラル・アカウンタビリティに必要な行動のガイダンス、モニタリング、報告、国全体の高度な評価、達成に向けた進捗状況確認の枠組みを作成する。

ステップ3 最新の結核疫学、国家結核プログラムの効果、資金調達動向の包括的な分析を含む国政の結核対策年次報告書を発行する。

ステップ4 これらのデータをハイレベルな評価の基盤とし、鍵となるステークホルダーをハイレベルな評価のメカニズムに関与させる。

地域団体と国は、ハイレベルな評価のメカニズムを確立させ、結核対策の達成に向けた進捗を地域ごとに定期的に確認する。

各国政府と鍵となるステークホルダーが誓約を果たすのを支援するために多国間の保健、開発、金融機関は戦略的かつ実効可能な運用計画を最新のものにしなければならない。

ドナーは各国の結核対策への誓約実現のため、それぞれの国の市民社会組織を支援する必要があり、彼らは地域の協働を生み出し、維持するために、NGO、結核回復者、コミュニティグループを支援しなければならない。

ボックス1.4: 結核に関する政治宣言で国連加盟国によって承認されたアカウンタビリティへの取り組み

高官による行動:
- 政治宣言で約束したことをすべて実現するため、国の結核戦略計画を策定または強化する。
モニタリングと報告：
- データの収集、分析、モニタリング評価目的での利用について国の能力を強化する。
- WHOの支援を得て、事務総長に対し、SDGsの達成という文脈の中で合意された結核の目標を達成する取り組みの進展について、分野別にみた世界、地域及び各国内の進展に関する 2020 年の報告を提出するよう要請する。

評価：
市民社会、結核を体験した人々、国会議員、地方自治体、学界、民間セクター及びその他医療分野以外も含めたステークホルダーによる積極的な関与を得て、政府の指示のもとハイレベルな全国的実績評価を実施する。
- 既存の地域政府間機関を利用して進捗状況を確認、情報共有をし、結核を終息させるための集団的能力を強化する。
- 持続可能な開発に関するハイレベル政治フォーラムを含む、確立された SDG 評価プロセスを通じて、UHC の達成に向けた取り組みを含む、結核の終息と関連する SDG 目標との連携を強化する。
- 国連事務総長による 2020 年の進捗報告をもとに、2023 年に開催される国連総会ハイレベルフォローアップ会合において発表予定の国家元首と政府首長による包括的な評価を準備する。

27 laration, paragraphs 4, 22, 23, 48, 49, 50, 51, 52 and 53.
第2章 インパクトのモデル分析と結果の種々相

第1節 概要

改定版世界計画では、2016年-2020年からのTB Impact and Model Estimates（TIME）手法の使用を継続する。このモデル分析ツールは、結核に関する国連政治宣言に示されている結核治療と予防の目標を各国が達成するための現実的なシナリオを提供している。

各国がそれぞれの状況に応じて、優先すべき結核対策パッケージに投資できるように、モデル分析結果では各国を所得、グローバルファンドの支援対象の有無、世界計画の状況、WHOの地域区分をもとにしたグループに分けている。今回の世界計画では、9つの異なる状況の国に分類して、投資パッケージを提示している。

第2節 優先すべき行動

疫学モデル分析によれば、国連総会ハイレベル会合の結核予防と治療の目標を達成することで、2030年までの結核終息に向けた、2020年の結核終息戦略中間目標を達成できる。各国は、国連総会ハイレベル会合の目標達成に向けた計画を策定しなければならない。国連総会ハイレベル会合で定められた国別の目標はストップ結核世界計画のホームページにある。（http://www.stoptb.org/resources/countrytargets/）

1. 世界計画の中では、国連総会ハイレベル会合の国別目標を遅くとも2020年には達成し、少なくとも150万人の命を救うことを呼びかけている。これを実現するために各国は自国の状況に合う世界計画の介入パッケージを策定し、投資する必要がある。

2. 各国政府は結核終息を計画する際、世界計画の投資パッケージを参考にすべきである。世界計画では各国、特に多くの人が民間の供給者による医療提供を求める国では結核終息計画が多部門、横断的で結核終息への民間セクターの役割を強化する方法が含まれていないわけではない。
第3節 国連総会ハイレベル会合の結核治療・予防目標のモデル
分析研究

世界計画 2016-2020 は、結核のまん延に対する世界の対応を加速させる一環でつくられた 90-(90)-90 ターゲット達成のインパクトをモデル分析した。しかし、実際の進捗はまだ世界計画の目標に至っていない。そのため結核終息戦略で定められた 2020 年の目標を達成する道筋もできていない。

この遅れとハイレベルな政治宣言の必要性を踏まえ、結核に関する国連総会ハイレベル会合では、各国の遅れを取り戻すための野心的目標が立てられた。同目標は以下を含む。

1. 350 万人の子どもを含む、4,000 万人の結核患者の治療の実施
2. 11 万 5,000 人の子どもを含む、1,500 万人の薬剤耐性結核患者の治療の実施
3. 5 歳未満児 400 万人、結核感染者の家族 2,000 万人、HIV 感染者 600 万人を含む、最低 3,000 万人に予防接種の提供

世界計画 2018-2022 は、これらの目標達成が及ぼす疫学的影響を見据え改定された。ここでは、TB Impact and Model Estimates (TIME) 手法28により、結核に対する国連政治宣言で定められた結核の予防と治療が拡大すると予測している。特定の国に特化したモデルは、29カ国での発生率と、死亡率の推定に関する WHO のデータに合わせて調整された。この国々は世界の結核感染の 80% を占める。世界計画 2018-2022 で推計されている各国の状況やグループに応じた TIME モデルは、142 か国に適応できる。29

第4節 モデル分析の結果

世界計画のモデル分析によれば、通常のやり方では 2020 年の到達目標をかなえられず、結核を終息させることができないが、世界計画を実施することで発生率は急激に低下し、結核を終息させる取り組みを軌道に乗せることができるとしている（図 2.1）。

29 The 142 countries comprise a Global Plan result set determined by the intersection of the WHO Global TB Programme country-level data and the UNAIDS country-level Spectrum AIM/EPP files. Spectrum AIM/EPP is the software used by UNAIDS to produce country-level estimates of HIV burden and resource needs.
図 2.2 及び 2.3 は、年別の結核発症者数の推移と国連総会ハイレベル会合の目標との比較及び、カテゴリー別（9つに分類）の累積発症者数と国連総会ハイレベル会合の目標との比較を示している。図 2.4 及び 2.5 は、2020 年の目標の達成が 2021 年にずれ込んでいるものの、これらの治療目標を達成することで、2030 年までに結核終息のための取り組みを軌道に乗せることが可能であることを示している。

WHO 地域、収入、国グループ別国連総会ハイレベル会合のターゲット

表 2.1 から 2.4 は、結核の治療を受ける必要がある 14 歳までの子ども及び多重耐性（MDR）結核の治療が必要な人、結核予防的治療を含む結核の治療が必要な人の数を示している。これらの予測は国のカテゴリごとに分類されている。特に重要である、結核の患者届出数目標の拡大が、結核発生率の低下に応じて進むということができる。一部の国では 2022 年への拡大曲線に平坦化が見られ、減少を示す国もみられている。国連総会ハイレベル会合における政治宣言によると、結核予防的治療の目標は、天井（最大限の値）ではなく床（最低限の値）として解釈すべきと提唱している。したがって、各国は目標を超える努力をする必要がある。

図 2.1：結核の罹患率への影響
図 2.2：結核に関する国連総会ハイレベル会合での目標に対する達成度（累計・年別）

図 2.3：結核に関する国連総会ハイレベル会合での目標に対する達成度（累計・国区分別）
図 2.4：結核に関する国連総会ハイレベル会合での目標の達成が罹患率に与える影響

図 2.5：結核に関する国連総会ハイレベル会合での目標の達成が HIV 陰性結核患者の死亡率に与える影響
### 表 2.1：治療中の人数の予測

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>結核届出目標値 合計</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>世界合計</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCED 加盟国含む</td>
<td>7,266,564</td>
<td>8,471,030</td>
<td>8,700,110</td>
<td>8,257,682</td>
<td>7,733,123</td>
<td>40,428,508</td>
</tr>
<tr>
<td>OCED 加盟国含まない</td>
<td>7,125,765</td>
<td>8,332,480</td>
<td>8,570,469</td>
<td>8,137,500</td>
<td>7,622,250</td>
<td>39,788,464</td>
</tr>
<tr>
<td>所得別</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>低所得</td>
<td>918,600</td>
<td>1,080,100</td>
<td>1,266,000</td>
<td>1,216,400</td>
<td>1,146,800</td>
<td>5,627,900</td>
</tr>
<tr>
<td>中所得下位</td>
<td>4,638,545</td>
<td>5,617,524</td>
<td>5,738,920</td>
<td>5,454,794</td>
<td>5,103,074</td>
<td>26,552,857</td>
</tr>
<tr>
<td>中所得上位</td>
<td>1,588,340</td>
<td>1,655,907</td>
<td>1,585,828</td>
<td>1,485,833</td>
<td>1,390,746</td>
<td>7,706,655</td>
</tr>
<tr>
<td>高所得</td>
<td>121,020</td>
<td>117,436</td>
<td>109,304</td>
<td>100,608</td>
<td>92,466</td>
<td>540,835</td>
</tr>
<tr>
<td>グローバルファンド支援対象国</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>低所得</td>
<td>918,600</td>
<td>1,080,100</td>
<td>1,266,000</td>
<td>1,216,400</td>
<td>1,146,800</td>
<td>5,627,900</td>
</tr>
<tr>
<td>中所得下位</td>
<td>4,635,345</td>
<td>5,614,024</td>
<td>5,735,720</td>
<td>5,451,894</td>
<td>5,100,374</td>
<td>26,537,357</td>
</tr>
<tr>
<td>中所得上位</td>
<td>475,907</td>
<td>514,157</td>
<td>503,441</td>
<td>465,237</td>
<td>430,518</td>
<td>2,389,260</td>
</tr>
<tr>
<td>合計</td>
<td>6,029,872</td>
<td>7,208,302</td>
<td>7,505,181</td>
<td>7,133,549</td>
<td>667,709</td>
<td>28,544,613</td>
</tr>
<tr>
<td>世界計画の国区分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高多剤耐性負担</td>
<td>214,450</td>
<td>205,850</td>
<td>195,050</td>
<td>185,450</td>
<td>179,050</td>
<td>979,850</td>
</tr>
<tr>
<td>結核/HIV の率が高い、南部アフリカ開発共同体</td>
<td>575,100</td>
<td>650,400</td>
<td>725,300</td>
<td>688,800</td>
<td>638,300</td>
<td>3,277,900</td>
</tr>
<tr>
<td>結核/HIV の率が高い、南部アフリカ開発共同体以外の国</td>
<td>531,550</td>
<td>666,000</td>
<td>850,400</td>
<td>848,000</td>
<td>799,700</td>
<td>3,695,650</td>
</tr>
<tr>
<td>高負担、COE</td>
<td>431,500</td>
<td>513,580</td>
<td>599,450</td>
<td>579,200</td>
<td>554,300</td>
<td>2,678,030</td>
</tr>
<tr>
<td>高負担民間セクター</td>
<td>1,988,400</td>
<td>2,445,200</td>
<td>2,563,000</td>
<td>2,430,000</td>
<td>2,270,900</td>
<td>11,697,500</td>
</tr>
<tr>
<td>中負担・中所得</td>
<td>428,740</td>
<td>460,050</td>
<td>464,241</td>
<td>441,033</td>
<td>415,825</td>
<td>2,209,889</td>
</tr>
<tr>
<td>インド</td>
<td>2,155,900</td>
<td>2,572,200</td>
<td>2,404,900</td>
<td>2,245,600</td>
<td>2,092,600</td>
<td>11,471,200</td>
</tr>
<tr>
<td>中国</td>
<td>806,000</td>
<td>827,150</td>
<td>776,850</td>
<td>728,000</td>
<td>679,900</td>
<td>3,817,900</td>
</tr>
<tr>
<td>WHO 地域</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMR</td>
<td>538,620</td>
<td>618,011</td>
<td>706,007</td>
<td>668,964</td>
<td>631,021</td>
<td>3,162,624</td>
</tr>
<tr>
<td>グループ</td>
<td>2018</td>
<td>2019</td>
<td>2020</td>
<td>2021</td>
<td>2022</td>
<td>合計</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>AFR</td>
<td>1,403,366</td>
<td>1,672,617</td>
<td>1,999,215</td>
<td>1,945,311</td>
<td>1,827,209</td>
<td>8,847,718</td>
</tr>
<tr>
<td>AMR</td>
<td>249,900</td>
<td>268,379</td>
<td>266,646</td>
<td>253,408</td>
<td>237,985</td>
<td>1,276,317</td>
</tr>
<tr>
<td>EUR</td>
<td>270,377</td>
<td>260,230</td>
<td>245,506</td>
<td>232,097</td>
<td>222,312</td>
<td>1,230,522</td>
</tr>
<tr>
<td>WPR</td>
<td>1,441,561</td>
<td>1,514,543</td>
<td>1,514,286</td>
<td>1,446,252</td>
<td>1,352,945</td>
<td>7,269,588</td>
</tr>
<tr>
<td>SEAR</td>
<td>3,362,740</td>
<td>4,137,250</td>
<td>3,968,450</td>
<td>3,711,650</td>
<td>3,461,650</td>
<td>18,641,740</td>
</tr>
<tr>
<td>BRICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>3,390,500</td>
<td>3,841,900</td>
<td>3,602,300</td>
<td>3,362,300</td>
<td>3,134,600</td>
<td>17,331,600</td>
</tr>
</tbody>
</table>

表 2.2：治療中の子ども（0〜14 歳）の人数の予測

<table>
<thead>
<tr>
<th>世界合計</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCED 加盟国含む</td>
<td>538,433</td>
<td>680,890</td>
<td>853,199</td>
<td>894,549</td>
<td>868,829</td>
<td>3,835,901</td>
</tr>
<tr>
<td>OCED 加盟国含まない</td>
<td>534,796</td>
<td>676,933</td>
<td>849,312</td>
<td>890,922</td>
<td>865,475</td>
<td>3,817,438</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>所得別</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>低所得</td>
<td>101,786</td>
<td>127,897</td>
<td>166,450</td>
<td>171,550</td>
<td>164,000</td>
<td>731,683</td>
</tr>
<tr>
<td>中所得下位</td>
<td>392,142</td>
<td>497,169</td>
<td>617,703</td>
<td>650,277</td>
<td>633,856</td>
<td>2,791,148</td>
</tr>
<tr>
<td>中所得上位</td>
<td>41,894</td>
<td>53,066</td>
<td>66,348</td>
<td>70,410</td>
<td>68,867</td>
<td>300,584</td>
</tr>
<tr>
<td>高所得</td>
<td>2,606</td>
<td>2,754</td>
<td>2,692</td>
<td>2,306</td>
<td>2,101</td>
<td>12,459</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>グローバルファンド支援対象国</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>低所得</td>
<td>101,786</td>
<td>127,897</td>
<td>166,450</td>
<td>171,550</td>
<td>164,000</td>
<td>731,683</td>
</tr>
<tr>
<td>中所得下位</td>
<td>392,142</td>
<td>497,169</td>
<td>617,703</td>
<td>650,277</td>
<td>633,856</td>
<td>2,791,147</td>
</tr>
<tr>
<td>中所得上位</td>
<td>26,127</td>
<td>30,045</td>
<td>38,212</td>
<td>32,686</td>
<td>31,221</td>
<td>158,291</td>
</tr>
<tr>
<td>合計</td>
<td>519,986</td>
<td>655,062</td>
<td>817,336</td>
<td>854,483</td>
<td>829,027</td>
<td>3,675,894</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>世界計画の国区分</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>高多剤耐性負担</td>
<td>7,587</td>
<td>7,688</td>
<td>7,870</td>
<td>7,646</td>
<td>7,390</td>
<td>38,181</td>
</tr>
<tr>
<td>結核/HIV の率が高い、南部アフリカ開発共同体</td>
<td>51,700</td>
<td>66,400</td>
<td>92,600</td>
<td>98,700</td>
<td>95,600</td>
<td>405,000</td>
</tr>
<tr>
<td>結核/HIV の率が高い、南部アフリカ開発共同体以外の国</td>
<td>46,998</td>
<td>65,608</td>
<td>99,812</td>
<td>112,810</td>
<td>110,009</td>
<td>435,237</td>
</tr>
</tbody>
</table>
表 2.3：多剤耐性結核治療の人数の予測

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>合計届出目標</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>世界合計</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCED加盟国含む</td>
<td>171,305</td>
<td>209,009</td>
<td>302,554</td>
<td>392,538</td>
<td>429,483</td>
<td>1,504,889</td>
</tr>
<tr>
<td>OCED加盟国含まない</td>
<td>168,797</td>
<td>206,329</td>
<td>299,147</td>
<td>388,439</td>
<td>425,453</td>
<td>1,488,165</td>
</tr>
<tr>
<td>所得別</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>低所得</td>
<td>8,690</td>
<td>12,331</td>
<td>24,025</td>
<td>34,392</td>
<td>37,324</td>
<td>116,762</td>
</tr>
<tr>
<td>中所得下位</td>
<td>97,468</td>
<td>121,637</td>
<td>183,089</td>
<td>243,068</td>
<td>269,173</td>
<td>914,435</td>
</tr>
<tr>
<td>中所得上位</td>
<td>62,906</td>
<td>72,704</td>
<td>92,714</td>
<td>111,921</td>
<td>119,911</td>
<td>460,155</td>
</tr>
<tr>
<td>高所得</td>
<td>2,239</td>
<td>2,334</td>
<td>2,723</td>
<td>3,154</td>
<td>3,073</td>
<td>13,523</td>
</tr>
<tr>
<td>グローバルファンド支援対象国</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>低所得</td>
<td>8,690</td>
<td>12,331</td>
<td>24,025</td>
<td>34,392</td>
<td>37,324</td>
<td>116,762</td>
</tr>
<tr>
<td>中所得下位</td>
<td>97,468</td>
<td>121,637</td>
<td>183,089</td>
<td>243,068</td>
<td>269,173</td>
<td>914,435</td>
</tr>
<tr>
<td>中所得上位</td>
<td>23,432</td>
<td>24,200</td>
<td>27,612</td>
<td>30,435</td>
<td>30,358</td>
<td>136,038</td>
</tr>
<tr>
<td>合計</td>
<td>129,619</td>
<td>158,196</td>
<td>234,753</td>
<td>307,919</td>
<td>336,878</td>
<td>1,167,300</td>
</tr>
</tbody>
</table>

世界計画の国区分
| 高多剤耐性負担 | 49,520 | 50,984 | 54,432 | 58,567 | 59,969 | 273,471 |
| 結核/HIV の率が高い、南部アフリカ開発共同体 | 14,284 | 16,664 | 23,079 | 27,754 | 28,924 | 110,705 |
| 結核/HIV の率が高い、南部アフリカ開発共同体以外の国 | 4,821 | 7,752 | 18,320 | 27,012 | 28,880 | 86,786 |
| 高負担、COE | 2,926 | 4,905 | 12,252 | 18,192 | 19,438 | 57,713 |
| 高負担民間セクター | 25,655 | 33,883 | 60,749 | 85,972 | 95,959 | 302,218 |
| 中負担・中所得 | 6,693 | 7,825 | 12,311 | 15,783 | 15,969 | 58,582 |
| インド | 53,940 | 65,390 | 86,070 | 110,210 | 124,050 | 439,660 |
| 中国 | 10,593 | 18,585 | 31,788 | 44,989 | 52,346 | 158,301 |
| 低負担、高所得 | 2,034 | 2,164 | 2,663 | 3,160 | 3,063 | 13,084 |
| WHO 地域 | | | | | | |
| EMR | 6,702 | 10,959 | 20,283 | 29,836 | 35,471 | 103,250 |
| AFR | 20,564 | 26,798 | 47,405 | 63,781 | 67,364 | 225,913 |
| AMR | 4,686 | 5,248 | 7,624 | 9,354 | 9,523 | 36,435 |
| EUR | 51,117 | 52,612 | 56,276 | 60,500 | 61,845 | 282,350 |
| WPR | 23,276 | 32,808 | 53,836 | 73,937 | 83,600 | 267,456 |
| SEAR | 64,960 | 80,584 | 117,130 | 117,130 | 171,681 | 551,485 |
| BRICS | | | | | | |
| 合計 | 101,994 | 122,491 | 159,377 | 198,690 | 219,666 | 802,218 |

<table>
<thead>
<tr>
<th>表 2.4：結核予防的治療を受ける人数の予測</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>合計届出目標</td>
</tr>
<tr>
<td>世界合計</td>
</tr>
<tr>
<td>OCED 加盟国含む</td>
</tr>
<tr>
<td>OCED 加盟国含まない</td>
</tr>
<tr>
<td>所得別</td>
</tr>
<tr>
<td>低所得</td>
</tr>
<tr>
<td>中所得下位</td>
</tr>
</tbody>
</table>

52
<table>
<thead>
<tr>
<th>地区</th>
<th>中所得上位</th>
<th>高所得</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>合計</td>
<td>3,240,900</td>
<td>3,536,200</td>
<td>7,787,000</td>
</tr>
<tr>
<td>低所得</td>
<td>952,700</td>
<td>777,100</td>
<td>1,729,800</td>
</tr>
<tr>
<td>低所得下位</td>
<td>1,676,700</td>
<td>2,158,300</td>
<td>3,835,000</td>
</tr>
<tr>
<td>低所得上位</td>
<td>612,000</td>
<td>601,700</td>
<td>1,213,700</td>
</tr>
</tbody>
</table>

グローバルファンド支援対象国

<table>
<thead>
<tr>
<th>地区</th>
<th>中所得上位</th>
<th>高所得</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>合計</td>
<td>3,240,900</td>
<td>3,536,200</td>
<td>7,787,000</td>
</tr>
<tr>
<td>低所得</td>
<td>952,700</td>
<td>777,100</td>
<td>1,729,800</td>
</tr>
<tr>
<td>低所得下位</td>
<td>1,676,700</td>
<td>2,158,300</td>
<td>3,835,000</td>
</tr>
<tr>
<td>低所得上位</td>
<td>612,000</td>
<td>601,700</td>
<td>1,213,700</td>
</tr>
</tbody>
</table>

世界計画の国区分

<table>
<thead>
<tr>
<th>地区</th>
<th>高多剤耐性負担</th>
<th>低負担・高所得</th>
<th>中負担・中所得</th>
<th>中所得・HIVの率が高い、南部アフリカ開発共同体以外の国</th>
<th>中所得・HIVの率が高い、南部アフリカ開発共同体</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>合計</td>
<td>3,240,900</td>
<td>3,536,200</td>
<td>7,787,000</td>
<td>9,043,300</td>
<td>9,043,300</td>
<td>18,086,600</td>
</tr>
<tr>
<td>低負担・高所得</td>
<td>97,300</td>
<td>135,200</td>
<td>175,400</td>
<td>252,100</td>
<td>252,100</td>
<td>504,500</td>
</tr>
<tr>
<td>中負担・中所得</td>
<td>132,400</td>
<td>199,900</td>
<td>314,300</td>
<td>443,100</td>
<td>443,100</td>
<td>886,400</td>
</tr>
<tr>
<td>インド</td>
<td>801,100</td>
<td>719,600</td>
<td>1,520,700</td>
<td>2,259,700</td>
<td>2,259,700</td>
<td>4,519,400</td>
</tr>
<tr>
<td>中国</td>
<td>111,100</td>
<td>192,000</td>
<td>303,100</td>
<td>495,200</td>
<td>495,200</td>
<td>990,300</td>
</tr>
<tr>
<td>合計</td>
<td>3,240,900</td>
<td>3,536,200</td>
<td>7,787,000</td>
<td>9,043,300</td>
<td>9,043,300</td>
<td>18,086,600</td>
</tr>
</tbody>
</table>

WHO地域

<table>
<thead>
<tr>
<th>地区</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMR</td>
<td>1,568,000</td>
</tr>
<tr>
<td>AFR</td>
<td>1,577,400</td>
</tr>
<tr>
<td>AMR</td>
<td>2,407,500</td>
</tr>
<tr>
<td>EUR</td>
<td>3,334,600</td>
</tr>
<tr>
<td>WPR</td>
<td>3,899,500</td>
</tr>
<tr>
<td>SEAR</td>
<td>12,787,000</td>
</tr>
</tbody>
</table>

BRICS

<table>
<thead>
<tr>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,568,000</td>
</tr>
<tr>
<td>1,577,400</td>
</tr>
<tr>
<td>2,407,500</td>
</tr>
<tr>
<td>3,334,600</td>
</tr>
<tr>
<td>3,899,500</td>
</tr>
<tr>
<td>12,787,000</td>
</tr>
</tbody>
</table>
第5節 国別に見た状況

世界計画では、90-(90)-90 ターゲットを達成するために設計された一連の推奨行動「投資パッケージ」を提供している。これらの投資パッケージは、結核流行の地域特性及び国の事情によって異なる保健システムの制約や社会経済状況に対応して調整されている。

特定の地域内の国々、似た歴史、社会経済的条件や保健システムの制約等を持つ国々の間には、類似点が見られる。こうした観点から、各国をグループ分けした。各国が持つ特色は2つ以上の区分にまたがって関連が見られる場合がある一方、同じ国の州によって別々の区分になることもある。

国 2.6：9つの国の区分

| 区分 1 | 東ヨーロッパと中央アジア | 薬剤耐性結核の比率が高く、病院を中心とした医療ケアシステムを敷いている |
| 区分 2 | 南部及び中央アフリカ | HIV と結核の寄与労働者への流動が問題となっている |
| 区分 3 | アフリカ | 銷業の影響はあまり大きくなり、HIV の問題が深刻（中〜高程度） |
| 区分 4 | 医療資源が著しく不足 | 困難な活動環境（COE）がある。 |
| 区分 5 | 高から中程度の結核負担 | 民間医療における結核への負担が大きい。 |
| 区分 6 | 中所得国 | 中程度の結核負担がある。 |
| 区分 7 | インド |  |
| 区分 8 | 中国 |  |
| 区分 9 | 低負担の国 | 結核終息の寸前である。 |

これらの国において、結核の発生率と出患者数は、過去 10 年間で大幅に減少しているが、薬剤耐性結核の割合が非常に高く、第 2 選択薬に対する耐性もある。結核患者のほとんどは、入院治療しており、通常、入院期間が長く、病院での感染管理が不十分であるとさら
に拡大し、薬剤耐性が増す。この結核ケア提供モデルは高価である一方、治療結果は標準以下である。季節労働者や囚人など、結核リスク集団の多くは、予防などの医療サービスへのアクセスが制限されている。

30 Country settings are not meant to form any alternative to existing formal groupings in public health, such as WHO regions, etc. Nor are they meant to form classifications for funding allocations or any other operational decisions.

54
結核に関する医療制度のキャパシティを向上させることは、人間中心の結核サービスを普及させ、結核対策の成果を上げる。この区分に属する国々は、あらゆるレベルにおいて、最新の迅速診断方法を普及させ、薬剤耐性結核の新薬と治療法を導入し、合併症の治療、積極的な薬剤安全性モニタリング（aDSM）、有害事象の管理、適切な治療継続の支援など、治療支援体制を強化する必要がある。また、薬剤感受性結核を持つ人と接触した成人及び薬剤耐性結核を持つ人と接触した人全員に対する予防的治療を含め、結核予防を推進させる必要がある。結核リスク集団については、特別なニーズに対応し、効果的かつ効率的な資源の割り当てと医療サービスへの支払いに関するメカニズム作成を促進するための体系的な対策を講じるとともに、結核情報システムのアップグレードが必要である。

推奨する投資パッケージ：
1 薬剤感受性及び薬剤耐性結核に対する治療のすべてのレベルにおいて、最初の検査に、迅速な分子診断法を用いる。
2 検査普及率の拡大、迅速な培養検査及び薬剤感受性試験（DST）調査の質を向上させる。
3 子どもと青年に重点を置いて、薬剤耐性結核の質の高い治療へのアクセスを普遍的に確保する。
4 デジタル技術の活用等、治療継続のための適切な支援を実施する。
5 治療中の結核患者、合併症、有害事象、安全のモニタリングを強化する。
6 結核情報システムをアップグレードする。
7 あらゆるレベルの結核治療において効果的な結核感染管理を確実に実施する。
8 効果的かつ効率的な医療資金の配分メカニズム及び人間中心の結核治療提供システムを構築する。
9 囚人と移民に特に重点を置いて、結核リスク集団が持つ特有の課題に取り組む。
10 世帯内の成人、その他の濃厚接触者に焦点を当て、接触者調査、結核感染検査と予防的治療の実施地域を拡大し、質を向上させる。また、薬剤耐性結核患者の接触者に対しても、予防的治療を提供する。

区分2 南部及び中央アフリカ HIV と鉱山労働者への流行が問題となっている。

これらの国々での結核のまん延は、HIV のまん延とともに拡大しており、結核患者の 50〜80％が HIV との合併症を抱えている。HIV の予防と治療は、ここ数年で急速に拡大しており、これらの国で結核が世界平均よりも急速に減少した理由の 1 つである。一方、これらの国々において、大規模な鉱山、小規模の「人力」鉱山のいずれの労働者も、大きな問題を抱えている。
鉱業労働によって生じる結核はその危険因子であり、国境を越えた鉱山労働者の移動は、適切な結核治療やその他の医療サービスへのアクセスを困難にしている。南部アフリカ開発共同体（SADC）諸国のハイレベル会合では、鉱業分野が結核に尽力すべきであるという強い政治的宣言がなされ、結核と鉱業に関する地域プロジェクトが、数年に渡って実施されている。こうした取り組みは、鉱山労働者が結核のリスクから守り、結核体験者や鉱山コミュニティに、質の高い結核医療とサポートを提供するための布石となった。

推奨する投資パッケージ：
1. 薬剤感受性結核及び薬剤耐性結核における初期診断に、分子診断を早急に拡大させる。
2. 関連研究機関において、薬剤感受性試験（DST）強化、検査室の品質保証、標本搬送体制を強化する。
3. HIV 関連結核及びその他の合併症の管理を向上させる。
4. HIV と結核を併発している人と、接触者のために、積極的な結核の患者発見をする。
5. HIV 感染者の結核感染診断に加え、HIV 感染者はもちろん、結核患者、患者に接触した子どもと成人への予防的治療を実施する。
6. 結核リスク集団（囚人、移民・難民等の移動集団、鉱夫など）の特有のニーズに対応する。
7. 情報システムを強化し、それらをウェブ上のライプシステムにするなど、結核に関するデータのプログラミングを改善する。
8. 大人、子ども、青年の薬剤耐性結核治療へのアクセスを増やす。
9. 治療支援インセンティブを含む地域ごとの介入と市民社会の関与を推進する。
10. 治療のモニタリング、有害事象の管理及び薬剤安全性のモニタリングを向上させる。
11. 結核治療のための人材育成に投資する。
12. 結核サービスへのアクセスに対する、人権と性別による差別を取り除く。

区分 3 アフリカ 鉱業の影響はあまり大きくないものの、HIV の問題が深刻（中程度から高程度のまん延）。

区分 3 は、区分 2 と似ているものの、鉱業が結核に比較的小さな影響しか及ぼさない一方、HIV がこれらの国においては、結核のまん延の大きな要因になっている。

推奨する投資パッケージ：
1. 薬剤感受性結核及び薬剤耐性結核の治療開始時検査として分子診断を普及させるとともに、検体輸送のシステムを強化する。
2 積極的な結核の患者発見と接触者調査の拡大を促進する。
3 成人、子ども、青年向けの薬剤感受性結核、薬剤耐性結核の治療へのアクセスを改善するとともに、薬剤耐性結核、治療モニタリング、有害事象の管理及び薬剤安全性モニタリングを向上させる。
4 成人の世帯、子どもや HIV 感染者を含む、結核の人々の濃厚接触者に対して、結核感染の検査と予防的治療を提供する。
5 HIV や他の合併症の管理により、結核・HIV の患者発見と診断を改善する。
6 地域に根差した介入の実施と市民社会の関与を強化し、加えて結核サービスへのアクセスにおける、人権や性差別による障壁を取り除く。
7 データとプログラミングを改善するための情報システムを強化し、これらのシステムをウェブベースにする。
8 結核治療のギャップを埋めるために民間の関与を促進させる。
9 受託検査施設の精度保証によって培養技術と薬剤感受性検査を強化する。
10 治療支援のためのインセンティブやインペラナー（報奨品）などを含め、結核リスク集団（囚人、移民・難民等の移動集団、鉱夫など）に特有のニーズに対応する。
11 調達・サプライチェーン管理（PSM）体制を強化する。

区分4 医療資源が著しく不足 困難な活動環境（COE）がある。

これらの国々は現在進行中の紛争に直面しており、医療制度の大幅な弱体化や人口の移動といったことが、結核治療の提供に大きな障壁をもたらしている。

推奨する投資パッケージ：
1. 革新的な技術及び手法で検体輸送システムを強化する。
2. 囚人、国内避難民、難民などの結核リスク集団に特有のニーズに対処し、これらの集団における活動性結核の患者発見を改善させる。
3. 大人、子ども、若者の薬剤感受性結核及び薬剤耐性結核の治療へのアクセスを増やす。
4. 治療支援におけるインセンティブなど、地域ごとでの介入を強化し、市民社会の関わりを増やす。
5. 結核サービスへのアクセスに対する人権と性差別の障壁を取り除く。
6. 薬剤感受性結核及び薬剤耐性結核の分子診断を展開する。
7. 革新的な技術及び手法で結核情報システムの改善を実施する。
8. 成人世帯及びその他の結核患者濃厚接触者へ予防的治療を届ける手段を確立する。
9. 情報、コミュニケーション、社会的動員等の分野の開発を強化する。
区分5 高から中程度の結核負担 民間医療における結核への負担が大きい。

これらは主にアジアの結核高負担国であり、結核患者は主に民間の医療機関で診療される。状況によっては、これらの国には、国家結核プログラムまたは届出システムから疎外されている公立病院がある。その結果、結核医療を求める多くの人々は、治療支援システムがない民間医療システムで診断・治療を受ける。医療の質は病院によって様々だ。また、民間部門で治療を受ける人々は、高額な医療費を自己負担しなければならない。

こうした問題を解決するためには、民間セクターの関わりについて、革新的なモデルが必要である。具体的には、民間医療セクターにおける医療の質の改善、すべての施設が結核届出をできるような使いやすいシステムの開発、高額な結核医療費の軽減と自己負担の削減を含む、結核患者への支援を行うためのパートナーシップの形成及び強化が必要である。

推奨する投資パッケージ：
1 民間セクターの医療事業者との関係を強化し、民間セクターで治療を受けるすべての結核患者に質の高い治療を提供できるようにする。
2 積極的な結核の患者発見と接触者調査を推進する。
3 薬剤感受性結核及び薬剤耐性結核の治療開始時の検査として分子診断を導入し、検体輸送システムを強化する。
4 受託検査施設の培養技術及び薬剤感受性検査を改善し、研究施設の精度保証を行う。
5 子どもや青少年を含む薬剤耐性結核患者への治療を拡大する。
6 オンライン届出用のデジタル技術活用を含め、結核の情報システムを強化する。
7 結核患者に対する金銭面及び心理面での社会的サポートを強化することにより、治療の完了を確実なものにする。
8 家族や結核患者との密接者相対して、結核感染の検査と予防的治療を提供する。
9 資金調達のギャップを埋める革新的な医療資金調達策を追求するとともに、政府高官へアドバイザーを行い、戦略的計画策定にすべてのステークホルダーを関与させる。
10 革新的な戦略とツールを使用して結核治療の人材育成を促進させる。
11 地域社会の偏見と差別の根絶活動を含む、結核治療の改善のための地域社会に根ざした介入と市民社会の関与を推進する。

区分6 中所得国 中程度の結核負担がある。

区分6に属するのは主にアジアとラテンアメリカの国々で、結核の負担が中程度であり、結核対策を拡大するために必要な事項のほとんどに対処できる資源を持っている。これら
の国々では、貧困層や疎外された人々に焦点を当てた社会的支援制度があるものの、これらの結核リスク集団は依然として医療へのアクセスが制限されており、これが診断の遅れや個人や家族の莫大な費用負担につながっている。

推奨する投資パッケージ:
1 薬剤感受性結核及び薬剤耐性結核の治療開始時の検査として分子診断を迅速に導入して結核診断を強化する。検査施設の精度保証により、受託検査施設における培養と薬剤感受性検査を改善する。
2 積極的な結核の患者発見と接触者調査を強化する。
3 結核患者の子ども、青少年、大人の接触者及びHIVやその他のリスクのある集団に絶対防的治療を提供する。
4 結核リスク集団（囚人、移民、難民集団、鉱山労働者など）の特有のニーズに対応する。
5 成人と子どもの薬剤耐性結核への治療を強化する。
6 結核情報システムを強化する。
7 地域社会に根ざした介入、市民社会の関与、政府高官級へのアドボカシーを促進する。
8 質の高い結核治療を提供するよう民間セクターに働きかける。

区分7 インド

世界的な結核患者のうち、4人に1人がインドに住んでいる。インドは世界最大の国家結核プログラムを実施しているため、独自の区分を設定した。インドでの結核終息に向けた進歩は結核に対する世界的な進歩を決定づけるものになる。

通常、インドでは、医療を求める人々が最初に行くところは民間セクターである。しかし、医療を求めて、結核の人が公共セクターと民間セクター両方を行ったり来たりするということも多々ある。したがって、インドは公衆衛生のインフラをさらに投資し、公共セクターと民間セクターの両方で提供される結核サービスの質を改善し、維持する必要がある。

インドで行われたいくつかの画期的な技術革新と研究は、結核への世界的な対応にも影響を与えていている。だが、現在の高い経済成長が維持されたとしても、インドは公衆衛生部門へ多くの資源を投入する必要がある。また、結核の影響はインド国内でもばらつきがあり、都市部の貧困層、部族や先住民族など、特定の集団に著しく偏っている。そのため、州、都市部と農村部の感染密集地域、そして結核リスク集団の全体にサービスが行き届くための個別の取り組みが必要になる。
インドでは結核に対し、非常に高いレベルの政治的コミットメントがある。ナレンドラ・モディ首相は、2025年までに国内で結核を終わらせる公式の声明を発表した。この政治的宣言を、結核終息のための包括的な医療サービスを急速に拡大させ、継続していく必要がある。

推奨する投資パッケージ：
1. 民間医療事業者の関わりを拡大して、すべての結核患者に質の高い医療ケアを保証する。
2. 薬剤感受性結核及び薬剤耐性結核の治療開始時の検査として分子診断を導入し、検査施設の精度保証により受託検査施設における培養と薬剤感受性検査を強化する。
3. 活動性結核の患者発見と接触者調査を拡大する。
4. 効率的な結核サーベイランスシステムの実現に向け、デジタルリアルタイム情報システムを強化する。
5. 新薬へのアクセスを拡大し、大人、子ども、青少年向けの薬剤耐性結核治療の提供を推進する。
6. 成人、子ども、その他のリスクの高い人々を含む結核患者家族接触者に対して感染検査と予防的治療を提供する。
7. サービス購入や官民協働などの革新的な戦略的アプローチを通じて結核治療に従事する人材育成を強化する。
8. 大人、子ども、青少年の薬剤感受性結核治療へのアクセスを増やす。
9. 金銭面及び栄養面における支援とデジタル治療支援技術を含む、治療支援システムや、インセンティブやイネーブラーの活用を拡大、維持する。
10. 新しいツール、ワクチン、診断技術、薬剤方式のための研究と革新に投資する。

区分8 中国
中国は国内に多くの資源と能力を備えた国であり、結核のまん延に対処する大きな責任があるため、個別に検討すべきである。中国の結核への資金は、ほぼすべてが国内の資金源によるものだ。中国はいくつかの有病率調査を実施したが、結核の低下を示す結果が得られている。

この減少の主な理由は、高いレベルで患者が発見できるようになったことと、治療の成功、そして急速な経済の発展である。電子登出システムによって、病院を公衆衛生システムにつけ、保健システムに優れたガバナンスを組み合わせることにより、結核の急激に大幅に増加した。一方、中国は高いレベルの健康保険を有しているように見えるが、結核
診断サービスと質の高い結核治療は、貧困層や他の疎外された人々に届いていない。治療費用やその他の医療行為へのアクセス費用が高いからだ。また、薬剤耐性結核治療の普及率も世界平均をはるかに下回っている。

推奨する投資パッケージ：
1. 薬剤感受性結核及び薬剤耐性結核を治療開始時の検査として分子診断を迅速に導入する。
2. 大人、子ども、青少年の結核に対し、薬剤感受性検査及び薬剤耐性結核の治療を拡大する。
3. 定期的な接触者調査と積極的な患者発見により、結核リスク集団における結核の早期診断を促進する。
4. 人、子ども及びその他の結核リスク集団（高齢者、囚人、難民など）の結核患者との接触を防ぎ、予防的治療を提供する。
5. インセンティブの提供や、イネーブラー、心理社会的サポートなど、積極的な患者発見と治療への支援を通じて、結核リスク集団の持つニーズに対応する。
6. 新しい診断技術、治療法、予防ツールを開発するため、結核の研究と技術革新への投資を拡大させる。
7. 財政支援策を通じて、結核によって貧しい人々が受ける経済的損失に対処する。

区分9 低負担国 結核終息寸前である。

区分9に属する国は、結核終息の目標をすでに達成しているか、または達成に近づいている低負担で高所得の国である。これらの国々は現在、結核の終息、つまり結核罹患率を人口100万人あたり1人未満にする目標を設定している。これらの国では、結核は移民、難民、貧困層、その他の疎外された集団など、最も脆弱な人々に集中している。結核管理の費用は高いか、結核治療に十分な資金を投入する能力がある。

これらの国には、結核終息のための世界的な取り組みに寄与するポテンシャルを持つ経済協力開発機構（OECD）開発援助委員会（DAC）加盟国が含まれている。これらの国々は、保有する資源を世界への貢献に向ける必要がある。具体的には、確立された多国間メカニズム（グローバルファンド、GDF、ユニットエイドなど）、もしくは研究開発機関へ向けられるべきである。

推奨する投資パッケージ：
1. 脆弱な、結核リスク集団への積極的患者発見と包括的な医療提供の支援をする。
2. 定期的な接触者調査を実施する。
3. 家庭やその他の場所で結核患者と接触した人に対し、結核感染の検査と予防的治療を提供する。
4. 結核リスク集団（移民、貧困層や他の集団から疎外された人々）の特性のニーズに取り組む。
5. ハイレベルでのアドボカシーや国家戦略計画を強化することで、すべてのステークホルダーを結核終息に関与させる。
6. 多国間の資金調達メカニズムを通じて、結核終息に向けた世界の取り組みへの寄与を行う。
7. 診断、治療及び予防の新たなツールを開発するための結核研究と革新に投資する。
第3章 結核リスク集団に手を差し伸べる

第1節 概要

結核リスク集団（脆弱な人々、疎外された人々、社会から取り残された人々、または結核の感染及び発病のリスクがある人々）に手を差し伸べることは、結核を終息させるために無くてはならない。疫学的観点、公平性、人権の観点から、彼らを保護する努力が必要である。その努力には、彼らが必要とする結核の予防、診断、治療やその他の医療、さらには支援サービスにアクセスする際に直面する社会的、政治的、法的及び経済的障壁を理解し、彼らを主要なステークホルダー及び平等なパートナーとして参画させることが含まれる。

結核の結核リスク集団に手を差し伸べるためには、彼らを結核治療のガバナンスと政治的な意思決定に参加させることが必要である。結核の実体験を理解するため、結核プログラムは結核リスク集団の代表者、結核政策、プログラム及びガバナンスのすべての議論・決定に参加できるように働きかける必要がある。実際に、これらの人々に手を差し伸べるために重要のは、アドボカシー・治療リテラシー・ピアサポート（似た境遇や立場の人による支援）・モニタリングと評価・プログラム設計・調達・人権について彼らの能力・調整機能向上への投資であり、これらが一体になることは、最も脆弱な人々のための治療を可能にする。よって、活動の優先順位は高くなる。また、これらの行動は、効果的なのはもちろん、人権に基づき、性别に配慮した、人間中心の方法で、未発見あるいは公衆衛生システムに届出をされている結核患者 330 万人を発見し、治療するのに役立つ。

第2節 優先すべき行動

政府

- 医療サービスへのアクセスの改善、必要に応じた体系的なスクリーニング、新しい症例発見方式及び効果的で安価な治療をすべての人々に提供することにより、結核リスク集団の結核患者の少なくとも 90%に働きかけることを目標にする。
- 国連ハイレベル会合（UNHLM）で約束した、結核患者を差別する法律、政策、プログラムの撤廃を実現させる。
- すべての差別をなくした、支援、教育、医療改善のための政策を制定する。各国政府
は、ストップ結核パートナーシップ及びその他のパートナーによって開発された差別根絶ツールを利用して開発することができる。

- 結核リスク集団の支援を拡大し、情報の品質を向上させ、安全な環境で結核の医療サービス提供とサポートがなされるようにし、偏見と差別からの解放を目指す。
- 国連総会ハイレベル会合の政治宣言内にある結核リスク集団と関連のある事項を国の結核戦略及び指針に組み込む。そして、特定の人々に届くサービスを提供するマルチセクトラルな計画を策定し、実施する。
- コミュニティ、権利、性別（CRG）の評価ツールを使用して、医療へのアクセスを妨げる障壁を探し、どの集団が結核に対して脆弱かを判定し、それに応じた手法を考案する。
- プライバシーを確保し、人権を保護する法律に従って、結核リスク集団ごとにデータを分類して結核の進捗状況を報告する。
- 病気のまん延と医療サービスへのアクセスの両方を考慮し、結核プログラムでジェンダー平等に配慮した施策とプログラム設計を行う。
- 結核にかかるサービスが人間中心であるとともに、結核体験者コミュニティのニーズを満たすよう、結核回復者及び結核リスク集団がすべてのレベルの政策立案及びプログラム設計に参画することを推進する。結核回復者のネットワークや組織のキャパシティ構築に投資し、彼らが結核対策のガバナンスに効果的に関与できるようにする。

技術パートナー

- 結核リスク集団の結核サービスへのアクセスを改善する際の優先順位のつけ方、必要な行動、進捗状況の観察、結核と治療の知識、観察と評価、そして人権の観点から、投資とキャパシティ創出とプログラムの経過監視を通じてこれらの人々が効果的に参画できる仕組みをつくる。

採掘会社

- 強力な感染対策方針を導入し、職場の健康と安全プログラムを提供することで、職場でのシリカ粉塵へのばく露を大幅に減らす。結核の定期検診、予防において、結核の鉱山労働者とその家族が適切な質の高い医療サービスを受けられるようなシステムを提供する。

刑務所、拘留所

- 定期的な結核の検診や診断を実施する。囚人や拘留中の人々及びそれらの施設で働く人のために、適切で質の高い結核治療へのアクセスを保証する。
- 結核治療または予防的治療を受けている最中に拘束を解かれた人に対して、医療行為の継続性を確保する。
第3節 結核リスク集団に手を差し伸べることは公平性と人権における最重要課題

世界のほぼ半数の人々が金銭的な理由などで質の高い医療を受けられず、不健康な環境で暮らしている、もしくは栄養不良の状態にあることは、容認できない現実である。私たちは、結核の罹患リスクが高い結核リスク集団を支援し、彼らに治療法を提供するとともに、治療下において、リーダーにも平等なパートナーとなり、勇気づける責任を有している。結核リスク集団に手を差し伸べることは、誰も置き去りにしないという SDGs の約束を果たすために重要である。

結核に関する国連総会ハイレベル会合の政治宣言において、国連加盟国は、結核を終わらせたためには、誰も取り残さないことを約束した。しかし、国連開発政策委員会によると、誰も置き去りにしないためには「あまり議論されないが、実際に実施をする際にもたらされる複雑性などの問題は十分に認めされていない」31ののが事実である。結核の罹患リスクが高い結核リスク集団が手を差し伸べるために、積極的かつ具体的な行動を取り必要がある。

結核リスク集団とは、結核に罹患するリスクが高く、医療サービスへのアクセスが減少した人々を意味する。偏見、差別、暴力や嫌がらせ、限られた法律や政策、犯罪は、彼らを結核罹患へのリスクを高め、医療サービスへのアクセスをより困難にしている。\(^{32}\) 結核リスク集団は、国の区分によっても異なる。結核リスク集団が、結核対策において意思決定者としての権利を持つことで、政府への働きかけが可能になる。彼らの結核を生き抜いたという経験は、結核医療へのアクセスに対する社会的、政治的、法的、性的、経済的または文化的な障壁を取り除くための取り組みに大きく貢献する。また、彼らは、ピアサポートのネットワークを通じて結核患者への支援を拡大させ、プライバシーを守って偏見や差別のない安全な環境で結核治療が提供されるようすえで、特別な役割を果たす。

第4章で述べたように、結核リスク集団と体験者コミュニティ自体が、結核終息のためのサービスを提供する上で、リーダーシップを発揮することができる。安定した結核サービスの提供のためには、政府は、どの集団が結核に対して脆弱であるか、彼らが地理的に見てどこに集中しているか、そして彼らが医療にアクセスするのにどのような障壁があるのかを分析する必要がある。その上で、政府は対象集団の結核問題に対処するため、利用可能なCRGツールを使用して、ピアを絞った支援活動を適宜実行する必要がある。もちろん、十分な資金を用いて、権利に基づく政策や立法の枠組みも整備しなくてはならない。

結核に関する国連総会ハイレベル会合の政治宣言では、各国が多数の国際的な法的枠組みを用いて、達成可能な最高水準の身体的及び精神的健康を享受する権利の保護及び促進に注力することを確認している。

特に、政府は結核患者に対する偏見やあらゆる差別の根絶を推進し、アウトリーチ、教育、ケアを促進する一連の政策を立案し、履行をする必要がある。

これらの行動は、年間330万人ともいう、診断を受けていない、または公衆衛生システムに届出されていない結核患者を発見するという、政治宣言の中のもう1つの誓約を果たすために必要だ。\(^{33}\) これはWHO、ストップ結核パートナーシップ、そしてグローバルファンドが共同で立ち上げたFIND、TREAT、ALL #ENDTBというイニシアチブが掲げている目標であり、結核体験者コミュニティ、市民社会及び開発資金パートナーを巻き込み、毎年何百万人もの人々が質の高い結核ケアとサポートにアクセスするのを妨げている障壁を


打ち破ろうというものである。34

世界計画は、各国が結核リスク集団の90%以上に対して、結核サービスへのアクセスを改善するために、必要に応じて体系的なスクリーニング35を実施し、積極的に革新的な結核患者発見の方法を実践し、必要とする人が手頃な価格で効果的に治療を受けられるようにすることを推奨している。そして各国が、結核リスク集団ごとに整理されたデータを使用して、結核対策の進捗状況を報告することを提唱している。技術パートナーには、結核リスク集団の結核サービスへのアクセスを改善するための、優先順位付け、行動及び進捗状況監視の枠組みを各国に提供することが求められている。

結核リスク集団への働きかけについての成功事例は、ストップ結核パートナーシップのTB REACHプログラムのケーススタディの概要に記されている。36

結核患者への働きかけの中には、発見されていない結核患者を見つけるためにグローバルファンドが戦略的に行ったフィールドでの活動報告も含まれている。37

結核と性別

結核患者の男女格差は、結核サービスへのアクセスの確保において大きな課題である。世界的に見て、男性は女性よりも結核に罹って死亡する確率が高く、2017年には約600万人の成人男性が結核に罹患し、84万人が命を落としている。一方で、成人女性の罹患者は320万人で死者は50万人弱であった。38

他方、結核は、生殖期及び妊娠中の女性に重大な影響を与えている。結核は依然として、全世界で最も多くの女性の命を奪っている感染症である。女性はまた、結核に罹患している人々を介護することが多く、そこで感染のリスクにさらされている。すべての結核サービスへのアクセスを改善するには、性別に配慮した手法が必要だ。性別が異なれば、結核への影響も異なり、偏見のレベルも異なる。また、権力と経済の不平等の結果として、結核サービスへのアクセスについては、さまざまな障壁が生じている。

35 For guidance, see WHO’s guidelines on systematic screening for active TB at: http://www.who.int/tb/tbscreening/en/
性別は偏見のレベルに影響を与え、多くの状況で感染症や病気のリスクを高める。社会、経済及び偏見による障壁は、結核医療全体で質の高いジェンダー対応のプログラムを策定したり、ジェンダー平等を進めるプログラムを実施したりすることで対処可能だ。結核リスク集団が結核治療と予防にアクセスでき、隔離や差別などの不当な政策や慣行から解放されるためには、法的支援も場合によっては必要である。39

<table>
<thead>
<tr>
<th>ボックス 3.1: 結核と人権における重要課題</th>
</tr>
</thead>
<tbody>
<tr>
<td>人権に基づく手法へのパラダイムシフト</td>
</tr>
</tbody>
</table>

結核に関する国連総会ハイレベル会合の政治宣言は、結核対策を人権に基づくものに変えるよう求めている。結核体験者の人権保護は、法的、倫理的、道徳的な義務であり、結核まん延により影響を受けた個人とその地域に安心をもたらするために非常に重要である。

人権に基づく結核への対応は、結核の教育、予防、診断、治療、その他の医療及び支援サービスへのアクセスに対する障壁を克服することに貢献するものだ。結核への取り組みにおいて、人権に関して考慮すべき様々な事項がある。

これらはすべての人権であり、都市部や農村部の貧困層、HIV感染者、麻薬を使用する人々、子ども、移民、難民など、最も脆弱で疎外されている人々、先住民、鉱山労働者、自由を奪われた人々の権利を尊重するために特に注意を払う必要がある。

人権に基づく、性に配慮した、人間中心の結核対策を通じて、結核サービスへのアクセスに対する社会的、政治的、文化的、法的、経済的障壁を克服し、結核介入の効果を大幅に高めることができる。

結核患者の権利を保証するための法的枠組みとその先例

結核に罹患した人々の権利宣言40 は、世界人権宣言41 の考え方に基づいている。それは、結核患者は生きる権利、尊厳、達成可能な最高水準の身体的及び精神的健康でいられる権利及び拷問やその他の残酷で非人道的または品位を傷つける扱いから解放される権利を有し、国際法及び地域の人権法に基づ


各国はこれらの権利を尊重し、保護し、履行する法的義務があるという考えである。国家以外の機関も同様の責任を負う。結核体験者に結核の医療と支援を提供するために州へ法的措置を講じた先例がある。欧州人権裁判所は、国が保護観察している子どもたちに結核医療を提供するよう、国に要求する判決を出した。更に2007年にアルゼンチンの最高裁判所は、国が人権条約及び国や州の法令に基づき、先住民族のトバの人たちに結核治療を提供する義務を負うという判決を下した。結核リスク集団が結核治療へのアクセスを得るために法的手段が必要であれば、それを支持する必要がある。

人権と結核予防
結核に関する国連ハイレベル会合の政治宣言はまた、5歳未満児400万人、家庭内感染者2,000万人、HIV感染者600万人を含む、3,000万人に結核予防的治療を提供することによって結核を予防することを誓約している。

予防的治療を3,000万人に提供するには、保健システムが結核にさらされた人々の権利をどう見るかに関わるパラダイムシフトが必要である。

医療システムは、結核の状態（感染しているか否か）を知りたい人々の権利を認め、それを尊重するように行動する必要がある。

これは、結核にさらされた人への積極的な働きかけ、品質が保証された予防的治療へのアクセスを提供する支援活動の根幹となる。

たとえばウガンダでは、DETECT小児結核と呼ばれる試験的手段で、結核と診断された大人がいる世帯の子どもを、地域の医療従事者が分散型サービスで定期的に検診する。これにより、2017年に世界で結核予防的治療を受けた5歳未満の子どもは全体の27%だったのに対し、ウガンダでは5歳未満の子どもの74%が結核予防的治療を受けることができた。

特に結核に繰り返しさらされるリスク集団（例：医療従事者）において、結核感染を検査するためのよりよい方法が期待されている。

結核への偏見
偏見を根絶することは、結核を発症しても、医療や支援を受けられない何百万という人に

手を差し伸べるために不可欠である。これは、より多くの結核リスク集団に働きかけることを目指とした取り組みと連動している。結核患者は、自身が家族、友人、同僚からさえ偏見の目で見られていると感じていることが報告されている。これはしばしば結核患者が自分の診断を他の人から隠す行為へと導いてしまう。結核患者自身が、結核に偏見を持ち、結核を恥ずかしいこと、嫌悪感や罪悪感を助長させてしまう。結核への偏見は、重大な社会的な及び文化的な障壁を作り出しており、結核患者が医療と支援を求めることが困難である。これにより、結核患者は自分に起きたことを正しく理解し、他人と共有することで結核への知識が深まり、偏見を減らすことができる。

政府が結核への偏見を取り除くのを支援するために、ストップ結核パートナーシップはUSAIDから支援を受け、世界及び地域のコミュニティネットワーク、結核活動家のグローバル連合からの医療従事者、ノースウエスタン大学ロースクールの医療専門家、WHOやKNCVなどの技術パートナーとの協力の下に結核スタグマ（偏見）の評価ツールを開発した。各国は、このツールを用いて様々な偏見の種類・レベル・原因・影響を分析し、結核患者が偏見に遭うための指針を作成することができる。

結核リスク集団

男性において結核の有病率が高いことから、国連結核宣言では、女性や子ども、先住民族、医療従事者、移民、難民、囚人、飲酒にさらされた鉱山労働者や他の人々、都市部や農村部の貧困層、栄養不足の人々、食糧難に直面している人々、少数民族、牛結核の感染リスクにさらされている人々やコミュニティ、糖尿病を抱えて生活している人々、精神または身体障がいのある人々、アルコール使用障がいのある人や喫煙者が結核に対して脆弱であることを認知している。結核リスク集団は、結核への遮断に加え、精度保証された結核サービスへのアクセスの制限、または生物学的または行動的要因により、結核罹患のリスクが高い（表 3.1）。1つのカテゴリーに当てはまる人々が、他のグループにも該当することもある。たとえば、鉱山労働者は、医療サービスへのアクセスがほとんどないコミュニティに住んでいて、HIVに感染しているケースもある。彼らはまた、喫煙及び飲酒の習慣が

---

ある、もしくは糖尿病を患っている可能性があり、家族に結核を感染させてしまうかもしれない。

子どもと青年
2018年には、15歳未満の子どもで推定100万人以上が結核を発症し、23万3000人がこの病気で死亡した。48その約80%は5歳未満の子どもだった。結核の子どもは、貧しい家庭にいることが多く、病気に関する情報や教育を受けておらず、保健サービスへのアクセスが制限されたコミュニティに住んでいる。たとえ子どもたちが医療サービスを利用できるとしても、医療サービスや施設は、子どもたちの結核を診断するためのツールが不足しており、専門知識を欠いていたりすることがよくある。最も一般的に使用される診断ツールは痰を採取する必要があるが、子どもは痰を出すことが困難であるため、そのようなツールは子どもに適していない。結核患者との接触歴がある子どもは定期的に検査され、必要に応じて結核予防的治療または治療が提供されるべきである。しかし、そのサービスには大きなギャップがあり、2017年には、世界中の結核予防的治療の対象となる子どもの75%以上が必要なサービスを受けられなかった。49

表3.1: 結核リスク集団

<table>
<thead>
<tr>
<th>住居もしくは職場で結核へのばく露が増加した人々</th>
<th>囚人、セックスワーカー、鉱山労働者、病院の訪問者、医療従事者、地域保健従事者</th>
</tr>
</thead>
<tbody>
<tr>
<td>どのような人々か:</td>
<td>• 都市のスラム街に住む</td>
</tr>
<tr>
<td></td>
<td>• 換気が悪い、または埃の多い状態で生活する</td>
</tr>
<tr>
<td></td>
<td>• 子どもを含む、結核患者の接触者である</td>
</tr>
<tr>
<td></td>
<td>• 過密な環境で作業している</td>
</tr>
<tr>
<td></td>
<td>• 病院で働いているか、医療従事者である</td>
</tr>
<tr>
<td></td>
<td>• 家畜と接触しているか、家畜と同居している</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>質の高い結核サービスへのアクセスが制限されている人々</th>
<th>移住労働者、性差別のある環境に置かれた女性、子ども、難民または国内避難民、不法な鉱山労働者、住民登録されていない移民</th>
</tr>
</thead>
<tbody>
<tr>
<td>どのような人々か:</td>
<td>• 部族や先住民族である</td>
</tr>
<tr>
<td></td>
<td>• ホームレスである</td>
</tr>
<tr>
<td></td>
<td>• 過疎地域に住んでいる</td>
</tr>
</tbody>
</table>

高齢者用施設に住んでいる
・精神または身体障がいがある
・医療へのアクセスに法的な障壁がある
・レズビアン、ゲイ、バイセクシュアル、トランスジェンダーである

免疫機能を損なう
生物学的または行動的要因により、
結核のリスクが増大した人々
・どのような人々か：
  - HIV に感染している
  - 糖尿病または珪肺症を患っている
  - 免疫抑制剤治療を受けている
  - 低栄養の状態にある
  - 喫煙者である
  - アルコール使用障がいである
  - 薬物を注射している

貧困地域の子どもたちは、母親の栄養により胎内、出産後の両方で、低栄養及び消耗症の高いリスクに晒されている。50 5 歳未満の乳幼児は診断が最も難しく、結核で死亡する可能性が最も高い。結核を逃してしまったケースは成人よりも子どもで増加している。

これらすべての理由から、結核に関する国連政府宣言では、2018 年から 2022 年の間に結核治療を受ける子どもの数が 350 万人、多剤耐性結核治療を受ける子どもの数が 11 万 5,000 人に到達することを目標としている。現在、多剤耐性結核治療にアクセスしている子どもの数に関する全世界のデータはなく、国レベルのデータがないという国も多いことから、子どもの多剤耐性結核を観察するモニタリングシステムを早急に確立する必要がある。

小児結核は、セクターの垣根を越えて対応する必要がなく、国家結核プログラムのみの責任ではなく。病気の子どもたちの治療は、主に小児科サービスを通じて行う必要があり、母子保健サービスを拡大するための全体的な取り組みの一環として、乳幼児の保健サービスと連携して取り組む必要がある。公共セクターと民間の両方の医療従事者や小児科医は、結核と診断されたすべての子どもを国家結核プログラムに届け出る必要があり、国家結核プログラムに対してこれらの子どもたちの治療結果を報告する必要がある。

青年（10〜19 歳）も固有の課題に直面している。結核の青年は、通常成人に見られる感染症を患い、学校や青年が集まる他の場所での感染リスクを高める。偏見への恐れ、友人からのプレッシャー、HIV 感染のリスク及びアルコールとタバコに起因する行動上のリスク

も、青年に結核感染のリスクを拡大させる。青年が信頼できる医療サービス、心理社会的サポート、そして教育への影響を最小限に抑える治療とケアが必要である。

結核の流行が 10 歳から 14 歳と、15 歳から 19 歳の青年にどのように影響するかをよりよく理解するには、国がこれらの異なる年齢グループにデータ分けをする必要がある。

子どもや青年の結核対策には、母親にも焦点を当てる必要がある。結核に罹患する可能性が高い、HIV に感染している女性は、子どもたちへの感染症の可能性を減らすために、保健システムによる支援とケアを必要としている。したがって、結核は、産前産後のクリニックを通じて母子保健プログラムのプライマリヘルスケアのレベルに統合されるべきである。

小児及び青年の結核終息に向けたロードマップ（図 3.1）は、世界中の小児結核による死者ゼロを目指に設定されている。この目標に到達するために重要な行動と投資増額の緊急性について説明している。

ボックス 3.2：ストップ結核パートナーシップ/GDF による小児薬剤耐性結核対策新規ツール普及支援の成果

2018 年、ストップ結核パートナーシップの世界抗結核薬基金（GDF）は、小児向けの治療薬処方の導入と拡大を促進し、薬剤耐性結核を治療するための小児用薬剤耐性結核の新たな取り組みを立ち上げた。日本政府が一部資金を提供しているこの新たな取り組みは、技術支援（「子どもの薬剤耐性結核に関するセカンダルプロジェクト」及び KNCV やパートナーズ・イン・ヘルスなどの実施者から）と子どもに優しい 6 種の製剤の導入のための調達支援を、17 の早期受諾国に対して行っている。この新しい取り組みは 2019 年に拡大し、米国と日本からの追加の支援により、新たに推奨されない入院可能になった 3 製剤が含まれ、50 か国以上で利用可能になった。子どもに優しい製剤を利用できるようにすることは、治療を受ける薬剤耐性結核の子どもの数を増やし、2022 年までに薬剤耐性結核の 11 万 5,000 人の子どもを治療するという国連総会ハイレベル会合の目標を達成するための 1 つのステップである。

http://www.stoptb.org/gdf/pedsDRTBinitiative.asp

HIV 感染者

結核は、HIV 感染者の最も主要な死因である。結核と HIV の同時感染の割合が高いとい

うことは、多くの国で結核の罹患率を下げるためにも、重要な課題である。WHOの最新のデータによると、世界のHIV感染者のうち、88万人が2017年に結核に罹ったと推定されている。55 結核菌に感染した人56のうち、HIVも併発している人は、結核を発症する可能性が最大で27倍高くなるが、57 HIV治療を受けた人の結核発症のリスクは大幅に低くなる。また、症状に基づいてHIV感染者の結核をスクリーニングする際においても課題がある。結核患者も同様に、HIV感染者は、しばしば偏見と差別の対象となり、医療サービスへのアクセスの妨げの要因となっている。

結核とHIVの同時感染はアフリカで特に深刻であり、2017年にはHIVを伴う結核による死者の84％がアフリカであった。58 だが、アフリカ以外の国においても、両方の病気を統合的に取り組むことが急務である。データによると、東ヨーロッパでは、HIVと薬剤耐性結核の両方の罹患率が上昇している。

結核に関する国連総会ハイレベル会合の政治宣言には、2022年までにHIVと共に生きる600万人以上に予防的結核治療を提供するという目標が盛り込まれている。

世界計画では、治療を必要とする集団（HIV感染者を含む）の結核患者の少なくとも90％を見つける、適切な治療（HIVと共に生きている人々のためにの結核治療と予防的治療を含む）を行うよう各国に呼びかけている。

HIVに関する国連政治宣言59では、HIV感染者の結核関連死を2020年までに75％削減するという目標と、ストップ結核パートナーシップの結核終息のための世界計画の90-(90)-90ターゲットの達成を誓約している。

これらの目標を達成するには、結核とHIVサービスの統合を加速し、HIVと結核に共同で取り組むために、WHOとUNAIDSが推奨する介入を実施するための、強力なリーダーシ
トップと政治的取り組みが必要である。60

図 3.1：子どもと青年の結核を終わらせるためのロードマップ

医療従事者

世界には推定 5,900 万人の医療従事者がいる。61 医療従事者にとって結核は、低所得国及び下位中所得国、そして高所得国の一部の医療機関では、依然として重大な職業上のリスクとなっている。これは、医療システムが医療従事者を結核への感染のリスクから確実に保護する必要があることを意味する。結核へのばく露が増大し、感染対策が不十分な状況

doi:10.4103/0019-5278.197518
において、医療従事者の感染のリスクは特に高い。プライマリーヘルスケア施設の医療従事者（主に女性）は、自分が世話している患者からの感染リスクがあり、結核を発症するリスクが大きい。検査室の職員も、感染性検体へのばく露による結核感染の危険にさらされている。

医療施設（病院、プライマリーヘルスケア施設、その他の地域密着型施設）で結核を予防するための取り組みは、優先順位に従って、管理的予防、衛生工学的予防、医療従事者の呼吸保護による一次予防に焦点を当てる必要がある。これらの取り組みは、定期的な結核検診及び結核治療とケアの両方を含む二次予防策でも強化されるべきである。職場での予防は、医療従事者が結核と診断された場合に彼らを保護するために不可欠である。また医療従事者は職業に起因する結核ばく露で発生した費用負担についても支援されるべきである。低所得国の施設では、これらの対策は、たとえあったとしても実施は不十分であり、財源も乏しい。

鉱山労働者
産業として、鉱業は、職業規制が弱く、規則が甘い国において、結核の主要な感染拡大要因である。鉱山の労働環境は結核のまん延に適した環境だからである。危険因子には、結核症（シリカ粉塵のばく露によって引き起こされる重篤な肺疾患）の有病率の高さ、高温多湿な坑内、混雑した作業環境、HIV感染率の高さ、タバコやアルコールの使用などがある。アフリカ南部及び中央部の鉱山労働者の多くは移民であり、医療へのアクセスに関しては、特有の複数の問題に直面している。移民が鉱山会社の労働力のかなりの部分を占めているため、鉱山労働者が結核になり、資格の高い継続的な医療にアクセスできないことで、結核が国の他の地域や国境を越えた労働者のコミュニティに広がることが懸念される。

2019年現在、世界における鉱業会社最大手10社だけでも、100万人近くの労働者を抱えている。また、小規模や「零細」の鉱業所には4,000万人が従事している。鉱業界には

64 Including carefully screening patients for TB symptoms and separating people thought to potentially be sick with TB from others within the health facilities, rapid patient diagnosis and treatment, and periodic screening of health workers for TB.
65 Engineering controls reduce the presence of TB bacilli in the air. Common methods are ventilation, opening windows and, in mild environments, placing waiting rooms outside.
労働者を結核から保護する強い政策と慣行を制定し執行する責任がある。国家結核戦略は、鉱業活動が結核の感染拡大を推し進めている状況を指摘し、安全で健康的な作業環境を確保するために鉱業会社の責任を明らかにする必要がある。南アフリカは、鉱山労働者に対する結核スクリーニングを義務付け、他の南部アフリカ9か国とともに、鉱山労働者の結核に対処するために、グローバルファンドの地域補助金を執行している。アフリカ南部の15か国は、結核を患った現職及び元鉱山労働者とその家族の治療とケアを改善することを誓約している。他の地域、特にアジアと中南米でも同様の取り組みが必要である。

鉱山労働者の結核に取り組む他方法には、シリカ粉じんの削減、より良い住居の提供、国境を越えた医療の改善、接触者の追跡、HIVのスクリーニングなどがある。鉱業、建設業、その他の粉じんの多い職場において、シリカ粉じんのばく露を削減するという、結核に関する国連の政治宣言に沿って、大規模及び小規模の鉱山でのシリカ粉じんのばく露を規制及び削減するために、より大きな投資が必要である。

囚人やその他の、移動の自由が制限されている人々

世界中で1,100万人以上が刑事施設に収容されており、移動の自由が制限されている。劣悪な刑務所の環境は結核のまん延を助長している。たとえば、サハラ以南のアフリカにおいて、一部の刑務所では結核感染の割合が一般人口の最大1,000倍にもなっている。ブラジルでは、人口統計の研究により、結核菌株の半数以上が刑務所から来ていることが示された。
された。76 2017年のあるシステムテイックレビューでは、すべての研究において、旧ソビエト連邦の囚人で高い多剤耐性結核感染率が見られた。77 刑務所の施設自体も、薬剤耐性結核の発生と拡大の一因となっている。入所及び出所する囚人は、対象を定めた支援を受けられず、治療を完了する可能性が低いからである。

刑務所内の結核に対処するには、保健セクターと司法セクター、そして研究コミュニティが大いに協働して、刑務所内の薬物耐性発生の様子をマッピングし、感染を防ぐための革新的な方法を考案しなくてはならない。また、刑務所内外で提供される医療をリンクさせることは、綿密的な結核治療を確実にするためにも不可欠である。難民キャンプや移動キャンプに住む集団へも、結核への特別な対策が必要である。これらの状況で結核医療を提供する取り組みは、国際的な優良実践に即し、かつ地域の状況に対応したものでなければならない。78

**移民**

世界の総人口に占める移民の割合は増加しており、その数は2010年に2億2,000万人であったのが2017年には2億5,800万人に達した。79 一部の移民は結核に対して特に脆弱である。80 彼らが違法にその地域に住んでいることや、言語や民族の違い、医療サービスを受けることができるという意識の欠如といったことが関係して、医療サービスへのアクセスが不十分となっているからだ。書類上表れてこない移民は、医療へのアクセスにおいて特別に困難に直面している。たとえ、移民が医療にアクセスできる場合でも、働くために移動する必要性や強制移住の脅威により、結核治療が中断され、薬物耐性が出現する可能性が高まる。

公衆衛生と人権の観点から、政策は人々が移民であるかどうかに関係なく結核の診断と治療にアクセスできるようにするべきである。81 同様に、移民政策及び労働政策の中で、結

---

81 Plan to Stop TB in 18 high-priority countries in the WHO European Region, 2007–2015. Copenhagen: World Health
核の状態が採用または雇用継続の考慮から除外されないことを保証する必要がある。
医療従事者は、移民のニーズ、特に結核とHIVの同時感染と薬剤耐性結核の可能性に対し、常に注意を払わなければならない。治療の継続性は移民集団では特に重要であり、連絡先の追跡と情報共有を備えた、国境を越えたシステムの開発は、国境を越えた治療プロトコルを統一させるために重要で、これには、医療関係者間の協力だけでなく、移民政策に関する政府間の協力も必要となる。

薬物使用者、アルコール乱用者
薬物の使用は、潜在性結核感染症と活動性結核の両方の発生に関連している。\(^{82}\)薬物使用による生理的影響、特に免疫力の低下につながるアヘン剤の使用は、感染リスク増大の一因となっている。薬物の使用により、治療が遅り、病気や死亡のリスクが高まる。麻薬は、持続性の咳などの症状を抑えて、表面化させない可能性がある。薬物を使用する人々は、ホームレス、喫煙、飲酒、投獄、汚染された注射によるHIVとC型肝炎のリスクなど、薬物と共存する傾向のある環境的及び行動的要因のリスクにさらされている。\(^{83}\)

薬物使用とアルコール乱用は、結核の診断やHIV診断後直後の治療など、重要な時期に医療サービスにアクセスできなくなることにもつながる。薬物を使用したりアルコールを乱用したりする人が結核治療を受けることができる場合でも、複雑、または長期にわたる結核薬療法を完了するのに課題が生じる場合がある。そして彼らもまた、偏見や医療従事者からの差別に直面するリスクが高くなる。

結核治療を薬物やアルコールを乱用する人々のためのサービスと統合することは、社会復帰後も結核治療が続いている限り、最も脆弱な人々に到達するのに有効だ。心理社会的支援とデイケアは、治療の成功率を大幅に高める可能性がある。\(^{84}\)濃厚接触は結核感染のリスクが高いため、薬物と一緒に使用する集団内では感染が広がる可能性がある。したがって、これらの集団を対象とした介入には、結核の予防的治療が必要である。薬物を使用する人々に権利に基づく結核治療を提供するためには、オピオイド依存症の人々に対する専門的治療の援助も含めて、ハームリダクション（被がいの軽減）の考え方が重要である。

---

n-region,-20072015


高齢者
高齢者は、特に先進国で、結核の感染をもっている最大の集団である。65 歳以上の人は結核に対してより脆弱であり、免疫が年齢とともに低下するため、結核感染が結核病に進展するリスクが高くなる。高齢者に影響を与える一般的な非感染性疾患に使用される特定の薬は、結核感染が活動性結核に進展するリスクを高める。研究により、高齢の結核患者では、基礎疾患を持っている頻度が高く、結核治療薬の副作用が多く、死亡率が高いことが示されている。85

臨床的特徴は非定型的であり、特に肺結核の高齢者は特徴的な症状を示さない可能性が高くなる。86 高齢の結核患者では通常治療成績が悪いため、特別な注意も必要である。診断は困難であり、結核は見落とされがちで、解剖で初めて発見されることも多い。87

糖尿病患者
専門家は、全世界の活性性結核患者の糖尿病有病率は 15.3％であると推定している。WHO によると、2017 年に結核を発症した 79 万人の根本的な要因が糖尿病であることもわかっており、糖尿病は免疫システムを弱めるため、結核発症のリスクを 2〜3 倍に高める。88 結核の負担が高い多くの低中所得国（LMIC）で糖尿病の有病率が急激に上昇しているため、結核と糖尿病の関連性は非常に懸念されている。

結核と糖尿病に共通で取り組む方法はいくつかあり、2019 年 1 月、国際結核及び肺疾患連合（世界糖尿病協会）と共同で開発した糖尿病・結核の共同管理に関する新しいテクニカルガイドを公開した。90 これは、糖尿病と結核の両方を持つ人の管理と治療のための最前線の医療専門家に重要な情報を提供している。

糖尿病と診断された人は、結核高負担国に区分される地域では体系的なスクリーニング検査を受けるべきである。糖尿病と診断された結核患者は、疾患管理を確実にするために、首尾一貫した結核プログラムの下で管理されるべきである。結核治療が完了後には糖尿病管理プログラムに紹介される。

地域で結核患者を診る医療従事者は、この二重の医療を確実にするために、血糖検査の訓練を受けるべきである。患者がいつ結核の検査を受けないといけないかを医療従事者が決めるために、結核に関する情報も糖尿病治療をしている診療所に提供されなければならない。

抗結核薬の調達・配送システムは、LMICにおいては、安定給供の難しい高価なインスリンにも適用できるようにすべきである。

糖尿病前症に関連する高血糖の水準は、結核のリスク上昇と相関するので、両方の病気の予防の手がかりとなりうる。糖尿病と結核治療を統合する取り組みは、HIVと結核に共通で立ち向かう取り組みと切り離せない。資源活用を最適化するために、結核のすべてのリスク要因に対して包括的に取り組む必要がある。

喫煙者及び大気汚染にさらされている人

喫煙（及び受動喫煙）、換気の悪い台所や家庭でのバイオマス燃料の燃焼による室内空気汚染は結核の主要な危険因子である。2017年に世界中で結核と診断された人のうち、推定83万人がその発病に喫煙が関係あるとされている。結核が多い国では室内での燃料の燃焼と喫煙が非常に広く行われているため、これは特に懸念すべきことである。これらの行動は結核の感染、活動性結核の発病、乏しい治療成績、そして結核再発につながる。喫煙者の数を減らし、室内の大気汚染を減らすことは、結核を終息させるために重要である。

喫煙は結核のかくも大きなリスク要因であることから、禁煙指導は初めて結核の診断を下した際の結核のカウンセリングとケアの要素とするべきである。

また、屋外または環境中の空気汚染へのぼく露が免疫を抑制し、人々を結核に対してより脆弱にする可能性もある。しかし、現時点では、大気汚染と結核との関係の可能性についてのデータは限られており、研究の結果にはばらつきがある。環境中の空気汚染が世界の病気の主要な環境リスク要因であることを考えると、結核への潜在的影響の研究が必要である。97

低栄養の影響を受ける人々
2017年には、栄養不良が原因で推定190万人が結核を発症している。98栄養不良と結核は強く関連しており、低栄養は結核に対する免疫防御を低下させ、潜在性感染から活動性結核への移行を促進する。結核はまた、栄養素や微量栄養素を吸収する身体の能力を損なう可能性があり、それがさらに低栄養や消耗症につながる。

2018年3月にインドのナレンドラ・モディ首相は結核患者に適切な栄養サポートを実施するために、2025年までに1億米ドルを割り当てて直接現金を届けると発表した。99これはインドだけではなく、各国が評価し、そして構築すべき施策の第一歩である。密集した不衛生な住宅に住む貧困層など、すでに結核感染のリスクが高い人々の多くは、低栄養に陥っている可能性がある。低栄養と結核の関係は非常に強いため、過体重の人は健康な体重の人よりも結核の罹患率がさらに低くなる傾向にある（肥満が糖尿病及び他の代謝性疾患を引き起こすにもかかわらず）。

一般市民の食糧の保障は、結核予防の重要な要素である。結核治療中の個々の患者に対する栄養支援が患者、特に薬剤耐性結核患者の規則的治療の順守に有効というエビデンスもある。100WHOは関連する指針も出している。101栄養支援を現実のものにするためには、社会福祉、財政、食料及び農業の責任者を含む他の省庁の部門間の努力が不可欠で、国によるMAF-TBの実施の一環として、これらの取り組みをモニタリングし、見直す必要がある。


99 We in India are working towards eliminating TB by 2025: PM Modi. 13 March 2018. https://www.narendramodi.in/text-of-pm-s-address-at-the-inaugural-session-of-end-tb-summit-539297


人畜共通の結核に罹患した人々

牛型結核菌（牛結核の原因となる細菌）によって引き起こされる人畜共通結核は、ほとんどが飼い牛とその製品からの感染によるものである。低温殺菌されていない牛乳、または感染した動物からの未処理の製品の消費者、牛の結核が風土病となっている農村地域に住む人々、牛飼い、乳製品労働者及び感染した動物または動物製品と接触する労働者はすべて、人畜共通結核感染の危険性が高い。

2016年には推定14万7000人が人畜共通感染症を発症し、1万2500人が死亡した。しかし、この数字は不確かなものだ。人畜共通結核に罹患している人の実際の規模は、牛型結核菌の適切な診断検査がないため不明で、さらに、その統計は日常的なサーベイランスの欠如により難しくなっている。これは、牛型結核が広く存在し、牛型結核菌の感染リスクを高めるような社会文化的慣行がある開発途上地域において深刻な問題となっている。

WHOの人畜共通結核のロードマップにあるように、人畜共通結核患者を予防及びケアするための103の取り組みは、ワンヘルスアプローチに基づいて、分野横断的かつ学際的に実施する必要がある。動物と人間が同じ環境を共有している場合、ワンヘルスアプローチは、病気への対応において人間の健康と獣医学の両側面から行われるべきだ。これらに関しては、診断ツールの開発、サーベイランスシステムとデータ品質の強化、牛型結核菌の経済的影響の評価が必要である。104, 105

第4章 主要な協働パートナー：市民社会、コミュニティ及び民間セクター

第1節 概要

結核に罹患しているすべての人々を見つけて治療し、戦略の中間目標を達成するには、各国の結核対応のための計画とその実施における段階で、市民社会、コミュニティ、民間セクターが協働する必要がある。

市民社会組織やコミュニティに根ざした組織は、意識啓発、積極的な患者発見への寄与、医療へのアクセス向上、治療中の結核患者の支援と励まし、心理社会的なサポートと偏見の軽減、プログラムの監視、研究開発におけるコミュニティ参画の促進、アドバイザー活動など、結核治療の計画及び実施において重要な役割を担っている。民間セクターには、高品質で手の届く価格の結核医療サービス、新しいツール、資源及び知見を届けるため、提供、開発、提携において果たすべき重要な役割がある。

保健とコミュニティにおけるシステムと民官連携の強化のため、投資が必要である。コミュニティと有意義な協力関係を築き、民間セクターの潜在能力を最大限に引き出すためには、考え方を変換することと、それを可能にする環境が必要である。

第2節 優先すべき行動

国家結核プログラム：

- コミュニティの保健システムを強化し、質が保証された結核医療と支援をどの地域の人々でもアクセスできるようにする。
- 結核プログラムにおける介入を設計・計画する際、最初から市民社会及び結核体験者のコミュニティを参画させ、結核サービスの実施、モニタリング、評価におけるパートナーとして積極的に貢献してもらう。
- 結核医療へのアクセス拡大、職場の結核対策方針及び結核対策イニシアチブの確立、そしてコミュニティへの働きかけの改善に向けて、民間セクター及び労働組合との提携が有効である。
ドナーとインパクト投資家:
- 結核終息への取り組みの一環として、市民社会組織やコミュニティ組織への資金を増やす。
- 結核に関する国連総会ハイレベル会合の政治宣言を果たすためのアカウンタビリティを確保するため、結核体験者のコミュニティと協力し、世界的なアドボカシーのために資金を提供する。

民間企業:
- 差別のない採用及び職場に定着できるような方法を採用し、感染のない安全な職場環境づくりを促す。従業員とその家族に手の届く価格で質の高い結核診断、治療及び届出サービスを提供する。
- 企業の社会的責任（CSR）イニシアチブにおいて、国家結核プログラム、結核団体及びコミュニティ組織と提携する。

第3節 結核への対応において鍵となるパートナーとしての市民社会とコミュニティ

結核に関する国連総会ハイレベル会合をきっかけに、結核への世界的な取り組みの焦点は、感染拡大の「抑止」から、「終息」へと転換した。

歴史的に見て、結核の「抑止」はトップダウンの方式を伴うものであったが、結核の終息については、根本的にアプローチが異なる。結核の終息のためには、結核の回復者、体験者のコミュニティ及び、市民社会がパートナーとして参画する必要がある。それは、結核のサービス、医療及び支援へのアクセスが図られ、立ちはだかる社会、政治、文化、法律、性別や経済に関連する隔壁を取り払うためのものであり、彼らは現実をよく知っている。また、彼らは実体験における結核の専門家である。彼らはこの病気がもたらす副作用、偏見（汚名・劣等感）や差別、孤立、そして経済の、肉体的及び心理的負担についてよく知しており、彼らの多くは生涯にわたる後遺症について身をもって体験している。

市民社会組織、患者支援団体、NGO、宗教組織（FBO）、青少年グループ、地域ボランテ
イアなどのコミュニティに根ざした組織も、結核医療とサービスへの普遍的なアクセスを推進する上で欠かせないパートナーである。支援が最も届きにくいコミュニティにアクセスできるため、コミュニティの医療従事者、そして結核回復者によるピアサポートのネットワークによる支援は、資源が乏しい多くの国の保健システムに欠かせないものとなってい

さらに、彼らの多くは最も脆弱な立場にある人々のための声を拾い、結核患者のニーズを主張することができるため、独自の状況での実行可能な介入についての提唱ができる。結核プログラムの計画、実施及びモニタリングにおいて、彼らの積極的な関与がないと、多くの場合は、トップダウンの疾患プログラムを履行することになる。トップダウンのプログラムは、世界や国家の結核戦略とは整合しているかもしれないが、地域の事情やコミュニティレベルの実情の理解不足により、活動がニーズと乖離し、非効率なままとなる。もしくは、結核体験者コミュニティがパートナーとして関与できていないので、奉仕すべき人々の権利を守ることができないことがある。

結核体験者のコミュニティはサービスの受け手であるだけでなく、一連の結核対策において活動の主体である。結核患者は患者である前に人間である。また、政府、政策、指針、ドナーの優先順位が変わる可能性があるとしても、コミュニティ自体は変わらない。このような原則は、結核対策のすべての側面で政府などと平等なパートナーとしての地位を主張する結核回復者や体験者をますます浮かび上がらせる。

第4節 有意義なコミュニティの関与と調整の確保

結核を体験した人々のコミュニティは、新しい結核の介入またはその構想がつくられる前に、国際的及び国内の結核活動の中心的パートナーとして、計画の最初の段階から参画すべきである。結核プログラムでは、中心的な活動に市民社会組織（CSO）を入れる必要があり、戦略策定やプログラム評価などの重要な会議や専門家の会議に参加するようにしなければならない。最終目的は、政府や他のステークホルダーと協力して、各コミュニティが所有及び維持する、適切な結核サービスの構築でなければならない。

世界計画では、地域社会が結核対策のさまざまな側面に深く関与するためのさまざまな方法を推奨している。コミュニティは、地域に根ざした取り組みと、コミュニティ主導の取り組みの両方を通じて、結核の終息への対応に関与すべきである。地域に根ざした取り組みとは、正式な保健システムではないものの現地で行われている取り組みで、コミュニティ主導の取り組みとは、コミュニティのメンバーが管理、運営する取り組みである。地域に根ざした取り組みとコミュニティ主導の取り組みの両方が正式な保健システムに関連付
地域社会や市民社会の関与における主要な課題は、歴史的に結核の終息に取り組む個人やネットワークの欠如による、他の社会との連携や市民社会内での連携を欠いていたことだ。その結果、市民社会やコミュニティの声が聞こえなくなり、国や世界の計画に影響を与えなくなった。しかし状況は変わりつつある。「TB Proof, We Are TB」のような結核回復者のネットワークは、近年組織的に成長しており、加えて、結核活動家のグローバル連合（GCTA）、グローバル結核コミュニティアドバイザリーボード（TB CAB）、TBヨーロッパ連合（TBEC）などの地域連合も生まれた。アドボカシーや他の要素の結核対策に従事する結核回復者の数を増やし、能力を高める必要がある。これは、ネットワーク、フォーラム、国・地域・グローバルグループへの参加、結核回復者主導の組織や連合に対する直接的な資源の貢献、ステークホルダー組織との連携、トレーニング、その他の支援・協働を通じて行うことができる。

結核コミュニティは、HIV コミュニティとさらに緊密に連携することで、その能力を高めることができる。結核と HIV の同時感染率が高く、主要な地域、特にアフリカでは統合的なアプローチが必要であることから、この統合は、各地域においても重要である。

結核コミュニケーションは協働の可能性を提供する FBO、法律相談所、人権団体、貧困対策及びマイクロクレジットネットワーク、女性と若者のネットワークなど、他のアドボカシー団体ともっと関わりを持たなければならない。これらの取り組みには、結核体験者たちを意思決定機関及びプロセスへ導く政府側のより積極的な行動に加えて、アドボカシードナーからの資金の大幅な増額が必要になる。

すべての場合において、国家結核プログラムは、市民社会組織及び結核体験者のコミュニティとの関わりの進捗状況とそれが結核との戦いに及ぼす影響を定期的に評価すべきである。WHO は、結核医療とサービスの提供における地域社会の関与に関連する 2 つの主要な指標である、結核患者の届出への地域紹介の貢献度と、あらゆる形態の地域治療支援の恩恵を受けた人々の治療成功率を追跡調査し、報告する。しかし、2018 年に 1 番目の指標を報告したのは 56 か国のみで、全体で結核患者届出のうち 27%がコミュニティ経由であると報告されている。2 番目の指標データを報告したのは 38 か国のみであり、コミュニティの支援を受けている人々の治療成功率は 87%であった。結核の届出及び治療の成功に対する地域社会の貢献は、日常的にモニタリングされ、全国的に報告されなければならない。

コミュニティシステムの強化

コミュニティシステムの強化（CSS）は、結核プログラムが人権と性別の平等への取り組みを支援する市民社会や、結核体験者コミュニティの関与を計画する際に役立つ。

107 CSSは、コミュニティのメンバー、組織、集団がコミュニティの課題やニーズへの対応を調整、提供するために必要な優れた持続可能な構造、仕組み、プロセス、実行者を作ることを支援する。

108 CSSにおいて、市民社会が役割をより大きな医療システムの一部として検討することにより、そのシステムのさまざまな側面がどのように相互接続されているか、どの側面を強化する必要があるかを分析することができる。必要な技術と資源を備えたコミュニティは、保健システムが結核患者のニーズを見極め、より良いサービスを唱え、ドナーと政府に責任を持たせるのに有効である。

市民社会は、国際的及び国内の意思決定の場で幅広く活動しているが、州及び地方レベルにおける参加の度合いは大きくばらつく。効果的なコミュニティシステムを構築し、結核回復者と結核の主要な結核体験者をあらゆるレベルで有意義に関与させるには、いくつかの要素が必要である。

動員:
結核回復者は、調査のために動員され、従事し、支援されなければならない。この経験から生き残った人々を結びつけ、持続的に確実な数の回復者を動員するための努力が必要である。確立された市民社会組織の支援を活用することは、ネットワークを構築または強化する過程において重要である。

能力構築:
コミュニティ組織は、自らのコミュニティが健康に関して抱えるニーズ及び実行可能な取り組みについて、重要な知識を持っている。結核の回復者、市民社会やコミュニティの代表者は、草の根の専門知識を豊富に持っているが、政府高官級の会議に有意義に参加してもらうためには、国際機関や政府と協力する必要がある。更にニュースメディアへの働きかけを行うなど、政策・方針が形成される過程に従事できるような支援が必要である。そしてこれらを実行するには、科学的知識、仲間への助言・支援能力、政府に対してその誓約についての説明責任や報告や評価を怠らないようにするのに必要な能力を向上させるためのアドバイザーのスキルをつけるための支援が必要になる。

108 Ibid
実現可能な環境：
結核回復者の生きた経験に圧倒されるので、彼らは意思決定に携わる必要がある。それが、プログラムを更に進展させるための彼らの役割である。これが効果的であるためには、結核体験者コミュニティの代表は、彼らが相談、報告する場を作らなければならないうちに、彼らはまた、重要な決定事項について準備し、戦略化するための時間と資源を与えられる必要がある。

金融投資：
有意義な関与のためのコミュニティシステムへの投資は、持続可能になるために必要である。それらは解決して質的向好化のためである。結核に関する国連総会ハイレベル会合政治宣言で強調されているように、結核体験者コミュニティと市民社会は、結核対策の重要な要素であり、出現在始めている。これらは全国的なプログラムと毎年結核を探る何百万もの人々にとってのゲームチェンジャーになる可能性がある。

「人権に基づく、統合された、人間中心の、地域に根ざしてジェンダー対応型の医療サービスを開発する」という必要性を満たすため、各国政府に責任を持たせるには、アドボカシー能力構築に人権の影響を評価するツールの使用に関するトレーニングを含める必要がある。これにより、コミュニティは、結核に関連する政府、貿易、国及び企業の政策の潜在的な人権への影響を予測して対応することができる。

グローバルファンドは、CSSに関するテクニカルブリーフ（技術解説）を作成し、結核に関するその利点と手法についてさらに詳しく説明している。109

ボックス 4.1：地球規模及び地域レベルの市民社会ネットワーク

「結核回復者」とは、結核にかかっている人、または結核にかかったことのある人を指す。「結核体験コミュニティ」または「結核体験者のコミュニティ」とは、結核にかかっている人、または結核にかかったことのある人、その家族、社会的接点者、その介護者を指す。さらに、「結核体験コミュニティ」とは、子ども、医療従事者、先住民族、HIV感染者、薬物を使用する人々、囚人、鉱山労働者、難民及び移住者、都市部と農村部の貧困層を含む、結核対策における結核リスク集団を指す。結核体験者のネットワーク、結核回復者、市民社会は現在、世界、地域、国、地方レベルで存在しているが、これらのネットワークを強化し、結核対策の計画、実施、ミネタリングにおける彼らの積極的な役割を確保し、すべての人にとって最高品質の結核サービスが求めるようにするためにさらなる努力が必要である。

Ibid

109 Ibid
結核体験者のコミュニティの動員は、さまざまな方法で実現されてきた。

国家レベルでは、次のような組織やネットワークが主導している。

- コンゴ民主共和国の Club des Amis Damien
- 南アフリカの TB Proof
- 米国の We Are TB

地域レベルでは、結核体験者コミュニティや市民社会のネットワークで次のようなものがある。

- 結核活動家のアジア太平洋連合 （ACT Asia-Pacific！）
- 結核に関するアフリカ連合 （ACT！）アンゴラアフリカ
- ラテンアメリカ及びカリブ海諸国における南北アメリカ結核連合
- フランス語圏アフリカの結核への対応の原動力 （DRAF TB） アフリカフランス語圏
- ヨーロッパ及び中央アジアにおける TB Europe Coalition (TBEC)

2つの世界的ネットワーク

- 結核活動家のグローバル連合 (GCTA) 結核体験者が直面する偏見を当たた擁護活動を主導してきた
- TBpeople 2018年から19年に結核体験者の権利宣言の作成を主導した。

患者ネットワークに加えて、グローバル結核コミュニティ諮問委員会 (TB CAB) がある。これは、新しい抗結核薬、治療法、診断技術、ワクチンの臨床試験を実施している製品開発者や機関に助言を与え、研究知識を持ったコミュニティ活動家のグループであり、研究デザイン、早期アクセス、規制当局の承認、市場流通の後、実施戦略に関する情報を提供する。

結核に関する国連政治宣言の主要なコミットメントを確保するには、全世界的に同盟し、調整されたネットワークが不可欠であり、それは結核対策のための国内及び世界的なアクウンタビリティを確保する取り組みにおいて不可欠なパートナーであり続ける。

多くの地域には、地域に根ざしたネットワーク、グループ、連合が存在する。知識の共有と共同活動を促進し、草の根レベルからの経験を高めて、世界的な政策立案とアドボカシーに影響を与えるために、世界的なレベルでの継続的な調整が必要であり、このことは結核に関する国連総会ハイレベル会合における宣言の履行に対する政府のアクウンタビリティ確保に重点を置いて行われる。そのような行動に対するドナーの支援は重要である。
コミュニティに根ざした医療と支援:

結核に関する国連総会ハイレベル会合政治宣言では、結核患者は地域社会を含む総合的な医療と支援を必要としているとした。これには、治療を成功させるための心理社会的、栄養的、社会経済的サポート及び偏見と差別の削減が含まれる。国連加盟国はこれに応えて、「結核患者は地域密着型の医療サービスを必要としている」とした。これらには、治療を成功させるための心理社会的、栄養的、社会経済的サポート及び偏見と差別の削減が含まれる。国連加盟国はこれに応えて、「結核患者は地域密着型の医療サービスを必要としている」とした。

この取り組みを遂行する上で、活動性結核と結核感染の両方に対する地域密着型の結核医療とサービスへのアクセスを改善することが重要である。結核患者は、結核治療が成功した後でも、生涯にわたって支援が必要になる。これらには、結核の合併症（例：HIV、糖尿病）、結核病の基礎となる要因（例：シリカ粉塵へのばく露、低栄養、喫煙）結核のリスク要因（クローン病または慢性関節リウマチの治療）、及び結核治療の完了をはるかに超えて持続可能な可能性がある肺機能障がいなどに対するケアが含まれる。

コミュニティの医療従事者を巻き込んで意識を高め、未到達者に手を差し伸べる:

コミュニティの医療従事者は、医療制度から取り残されている人々に手を差し伸べるうえで重要な役割を果たす。これは、誰一人取り残さないという政府の取り組みを支援することになる。地域社会への働きかけと教育プログラムを通じて、地域医療従事者は結核症状のある人々に対し、医療従事者にコンタクトするか、医療施設を訪問するよう勧めている。彼らが動機でないときは、コミュニティのスタッフが、診断のために病の検体を最寄りの医療施設に運ぶのを手伝うことができる。

コミュニティの医療従事者は、結核の接触者調査の実施を支援し、スクリーニングを受け重要な役割を果たす。これは、ゼロ一人取り残さないという政府の取り組みを支援することになる。地域社会への働きかけと教育プログラムを通じて、地域医療従事者は結核症状のある人々に対し、医療従事者にコンタクトするか、医療施設を訪問するよう勧めている。彼らが動機でないときは、コミュニティのスタッフが、診断のために病の検体を最寄りの医療施設に運ぶのを手伝うことができる。

状のある人々に適切な医療を求めることを奨励することは、地域社会の代表者があたたし信頼とお互いの人間関係に依存している（ボックス4.2を参照）。

このような積極的な患者発見行動における既存の地域医療従事者の参加は、症例の発見と治療の結果を改善した。しかし、彼らにはまだできることがある。地域医療従事者と協力して、結核のスクリーニングを実施し、医療従事者を必要とする人を積極的に特定するために必要のは、HIV、母子保健やその他の社会福祉プログラムと統合して、結核の地域社会への働きかけを行うことである。

性別は、地域社会に基づく結核への対応の重要な側面であり、サービスを提供する地域医療従事者は、医療やサービスを受ける人々の性別に基づくニーズに対応する場合、特定のコミュニティやセクスワーカー、思春期の少年、思春期の少女、鉱山労働者など結核リスク集団への取り組みを実施する準備が整っていることが多い。

コミュニティの医療従事者が行う作業は、地方レベルと政策及び戦略のレベルの両方で、医療施設のサービスを統合することだ。ソーシャルメディアと社会監査メカニズムは、患者、CSO、コミュニティメンバーがサービスの改善と進捗状況のモニタリングを行う際に、より広く利用されるべきだ。2012年に開発されたWHOのENGAGE-TBという手法は、まだ結核に取り組んでいないNGOやCSOと効果的に連携する方法について国家結核プログラムにガイダンスを提供している。

コミュニティに根ざしたモニタリング（CBM）：
コミュニティは、結核対策の監視役となる権限を与えられ、結核体験者の権利を促進及び保護するために、他のすべてのステークホルダーがその責任を実現しているかを確認する必要がある。このため、コミュニティに根ざしたモニタリング（CBM）は、保健システムとコミュニティの間のギャップを埋めるのに有効である。

結核のCBMは、地域の情報とコミュニティのニーズに基づいて行われる介入であり、すべての人が質の高い医療と支援サービスを適時に利用可能となるよう、結核への対応におけるアカウンタビリティを高めることを目的としている。

112 Ibid
結核患者と結核体験者コミュニティの人々を関与させて、サービスへのアクセス阻害要因についての報告等フィードバックを得ることで、CBMは結核患者の医療と支援サービスの応答性と公平性を改善し、プログラムによる介入と政策決定の計画と通知、評価する助けとなる。CBMは、情報を生成することにより、未到達の人々に手を差し伸べるのに役立つ。また、毎年何百万もの結核患者の医療制度を受けられないという、複雑な社会、経済、人権問題を含む、地域社会と結核対策の双方にとって重要な問題を解決するため、地域の関与を後押しする。

2017年以降、USAIDとグローバルファンドの支援を受けて、ストップ結核パートナーシップは、コミュニティモニタリングフレームワークとOneImpactと呼ばれるデジタルソリューションプラットフォームを開発して、結核対応におけるCBMを促進している。One Impactは現在8か国をサポートしている。114

伝統的な施術者の関与：
地域主体のシステムは、非公式の医療事業者を正式な医療システムとリンクすることにより、変革的な役割を果たすことができる。結核治療における主な課題は、資源が少なく、負担が大きい国では多くの人々が、公衆衛生診療所や病院ではなく、伝統的な施術者や薬剤師に最初に治療を求めることである。結核プログラムはこれらの伝統的な施術者や薬剤師にもっと積極的に働きかけ、彼らと協力して保健医療施設を紹介する必要がある。

心理社会的支援、社会的保護、緩和ケアの提供:
結核治療の完了は時として困難である。治療は長く、副作用があるため、カウンセリングと包括的な結核治療の支援が重要だ。結核に感染した可能性のある地域の住人は、結核治療を成功させるために必要な心理社会的支援を結核患者が確実に受けられるように支援することができる。

特に遠隔地に住んでいる人々にとって、治療にアクセスするために診療所に行くのは費用がかかる。さらに、移動しなければならないということは、結核の人々がその過程で収入を失う可能性があることを意味する。コミュニティのメンバーは、結核患者が治療を支援するための食事引換券や条件付き現金引換券などの社会的保護制度を利用できるよう支援できる。

すべての宗教の FBO も、コミュニティに根ざした医療に不可欠な資源である。これらのグループは、他のコミュニティに根ざした労働者と同様に、既存の医療システムでは不可能だった、結核を持つ人々の自宅における緩和ケア提供に役立つ。

偏見根絶におけるコミュニティの役割：
結核を取り巻く偏見はまだかなり存在する。これを根絶することは、結核治療の過程全体を通じて人々がケアと支援を求められるようにするために重要である。多くの結核体験者にとって、彼らが直面する最大の課題は偏見である。家族、周囲のコミュニティ、同僚、または医療従事者から偏見を受ける可能性がある。自己嫌悪に及ぶことになり結核患者は、結核に対する恥や罪悪感を内在化させてしまう。

結核に関する国連政治宣言では、各国政府は「結核患者に対する差別的な法律、政策、プログラムの削除、人権と尊厳の保護と促進、福祉、教育、ケアを向上させる政策と実践などによる偏見とあらゆる形態の差別の根絶促進とその支持」への注力を約束している。

<table>
<thead>
<tr>
<th>ボックス 4.2: エチオピアの保健普及員（HEW）</th>
</tr>
</thead>
</table>
2003 年以来、エチオピア政府は保健普及員（HEW）プログラムを実施しており、それにより健康に関する重要な政策が大幅に改善された。研究によると、HEW は結核治療と結核へのアクセスを大幅に改善し、成功に貢献した。エチオピアの田舎のシダマゾーンでは、HEW がコミュニティで働き、結核症状のある人を特定し、喀痰検体を収集し、検査用のスライドを準備して検査のために染色して読んだ後、検査室に移送した。1,000 人以上の HEW が、結核症状のある 20 万人以上の喀痰サンプルを収集し、1 万 7,500 人以上の塗抹陽性結核患者を特定した。この介入により、300 万人を超える地域で治療を受ける人の数が 2 倍になった。さらに、HEW は治療を支援し、治療の成功率は 2010 年から 2015 年の間に 76% から 95% に向上した。エチオピアはその後、全国的な結核治療の成功率向上を達成した。2017 年現在、結核の治療成功率は、新規症例で 96% であり、世界平均の 85% を大幅に上回っている。


これに応じて、国家結核プログラムとパートナーは、結核の回復者、体験者コミュニティ、文化的リーダーやインフルエンサーと連携して設計及び導入された、偏見を根絶するための対象を絞った介入に投資する必要がある。偏見は性別を含む社会的及び文化的認識に根ざしているため、法律や政策に加えて、偏見や差別につながる誤解を打破するためには、コミュニティでの教育活動が重要になる。コミュニティが有義に関与し、結核回復者を意思決定過程に取り組み、彼らが結核の取り組みにおいて指導的役割を担うことができるようになるにつれ、偏見はなくなっていく。差別の法律が残っている場合、法改正が重要になる。すべての場合において、ソーシャルメディアや他のデジタルプラットフォームは、偏見をなくし、結核サービスや医療へのアクセスに対する社会的障壁を特定して克服する上で重要な役割を果たすことができる。

研究におけるコミュニティの関与:
研究の早期段階から臨床試験の設計、成功したイノベーションの提供と大規模な取り込みまで、研究のあらゆる側面に結核体験者コミュニティを関与させることは、結核との闘いにおいてコミュニティを同等のパートナーにするのに役立つ。すべての研究者とスポンサーは、体験者コミュニティ、患者グループ、市民社会による結核の研究開発を含めた計画と実践に対する関与を強める必要がある。実際、コミュニティのメンバー自身が組織されており、研究目的でコミュニティとの関わりを最適化する方法についての研究機関への助言の準備はできている（ボックス 4.3）。第6章では、研究へのコミュニティの取り組みについて詳しく説明している。

コミュニティの能力構築と市民社会主導のアドボカシーのための資金援助の提供：
CSSへの一貫した持続的投資は、結核との闘いにおけるコミュニティの貢献を最大限に引き出すために不可欠だ。コミュニティに根ざした介入とコミュニティによる介入、ならびに市民社会主導のアドボカシーとアカウンタビリティの取り組みに対する財政支援の増加により、治療、予防及び研究開発の結核目標について、国連総会ハイレベル会合の宣言を達成するために必要な資源を活用できる。結核対策は地域社会や市民社会への追加投資なくしては遅々として進まず、世界の結核目標を達成するための軌道に乗らないままだ。ドナーと影響力のある投資家は、結核終息への取り組みの一環として、市民社会とコミュニティ組織への資金提供を検討する必要がある。資源のニーズについては、第7章で詳しく説明する。

ボックス 4.3：結核終息のために議会のチャンピオンと提携
国連政治宣言が国家元首によって承認されて以来、世界中の議員（MP）が動員され、宣言の結果を実現する

施するために国会に持ち帰った。

国会議員（MP）は、国内の独立したネットワークである国別結核議員連盟の設立を通じて政府に結核に対する意識、したがって国連総会ハイレベル会合の目標に対する意識を伝達している。多くの国では、市民社会組織がアドボカシーの中心的な役割を果たしている。これらの国は、国際的及び地域的なアドボカシーと政府の関与を調整するための重要な機会を生み出す。

世界結核議員連盟（GTBC）の支援により、2019年にブラジル、デンマーク、エスワティニ、パラグアイ、ルーマニア、チャドで全国集会が発足し、世界中で合計50の集会が行われた。93か国の議員は、2019年にそれぞれ国連総会ハイレベル会合の目標に沿った行動をしたと報告した。

世界結核議員連盟は、結核終息の政治的意味を果たすため150か国以上で2,500人以上の国会議員が参加する国際ネットワークである。世界結核議員連盟は、結核から生活し、保健大臣の関与や、結核へのより多くの投資を支持する議会プロセスの導入など、有効な行動を起こす意思決定者の支援に焦点を当てている。

国会議員は、オランダを含むいくつかの国で追加予算を確保した。アフリカは KNCV と緊密に協力して、新しい結核診断の世界的な実施のために必要な予算に、さらに550万米ドルを確保した。ケニアでは、ステーブル・ミュール議員が、結核国家予算のために200万米ドル近くの資金調達に成功した。

全世界レベルでは、世界結核議員連盟が国会議員をまとめて、地域から40名以上の国会議員の経験を、2019年8月のアフリカ結核サミットを含むサミットで共有した。この協力は、結核の国際的な議題に上げるために、国会議員がAPEC、AU、G7、G20などの政治プラットフォームを利用して地域レベルで働くことを推奨している。

第5節 学術コミュニティとの提携

研究の実施や次世代のリーダーの教育から、技術指針への影響、政府当局や政策立案者への専門家の助言の提供まで、学術専門家は常に世界的な結核対策において重要な役割を果たしてきた。学界からの貢献は、結核研究のあらゆる方法を進める上で特に重要である。研究における学術コミュニティの役割については、第6章で詳しく説明する。

学界との提携を強化するために重要となるのは、アドボカシーである。学者は、方針の設
定、資源の動員、公衆衛生介入の開発に係るデータ主導の証拠を、政策立案者やニュースメディアを含む他の結核関係者と共有できる。
アドボカシーへの学術的関与の1つのモデルは、結核に関する国連総会ハイレベル会合に対する英国政府の支援を求めるアドボカシーのために組織された、英国の学者たちによるネットワークである。著名な大学や学術組織の指導者を含む英国の130人以上の学者がテリーザ・メイ首相に対し、国連総会ハイレベル会合への参加を求める共同署名の手紙を送った。彼らはその後、様々な機会を活用して国連総会ハイレベル会合へのメディアからの注目を集めた。120

アドボカシーに多くの学術専門家を効果的に関与させるには、戦略的コミュニケーションのために、メディアの分野において、新しいトレーニングとコーチングの機会を提供する必要がある。より多くの学術専門家とアドボカシー実施者をつなぎ、学術専門家に政策立案者やメディアを関与させる機会を提供することも重要だ。そうすることで、学者は専門家としての考えを共有して結核政策と公衆衛生の実践に影響を与えることができる。同様に、アドボカシー実施者や活動家の科学的リテラシーを強化して、より多くのアドボカシーを行う人たちが学術コミュニティによる研究を効果的に使用できるようにすることができる。理想的なシナリオは、新たに発表される学術研究で結核に関するものすべてについてアドボカシーに活用できる可能性を検討し、その要約を、新しく重要な研究結果を用いて実社会へ影響を与えることができる立場にあるアドボカシー実施者やインフルエンサーと共有することである。

第6節　民間セクターとの提携

民間セクターとの提携は結核をなくすうえで重要である。結核の終息という文脈において、民間医療セクターには、以下のステークホルダーが含まれる。

民間の健康製品メーカーとの提携
実験装置やワクチンの製造業者を含む民間の製造業者は、新しいツールの研究開発、診断及び治療薬の製造と供給に直接貢献し、結核プログラム及び世界中の結核に罹患している人々のニーズに対応している。このような企業との官民連携は、新しいツールの開発を迅速に進めるとするため、あるいは結核患者が治療薬、診断薬、ワクチンを手頃な価格で利用できるようにするために不可欠である。2019年にユニットエイド、グローバルファンド及びサ

120 May urged to join global talks on TB. The Sunday Times, 4 August 2018. https://www.thetimes.co.uk/article/may-urged-to-join-global-talks-on-tb-hsf39jsn2
ノフィは、リファベンチン（2022年までに4,000万人に結核予防的治療を提供するという目標を達成するために重要な薬）の価格をおよそ70%低下させた。
新しい結核診断技術、治療薬、ワクチンが開発されると、そのようなパートナーシップは、結核患者にアクセスを提供し、特にサービスの急速な拡大時に需要に見合う安定供給を確保する上で重要な役割を果たす。

民間医療システムとの提携
2022年までに3,000万人の結核を治療するというUNHLMの結核目標達成の第一優先の標的は、患者が求める高い結核診断（迅速なDSTを含む）、治療、ケアを希望する場所で確実に受けられるようにすることである。

多くの国の人々は、アクセスのしやすさとアクセスのしやすさと見えるからより高い品質から、民間セクターでの医療を好む。アジアの多くの国では、貧しい人々を含めた結核の症状をもつ人々のかななりの割合が、まず民間の医療機関での治療を希望する。こうした場合の優先事項は、民間医療セクターで提供される結核医療が実際に質の高いものであることを保証することだ。
ほとんどの国で、民間医療事業者によって結核の診断と治療が行われた患者のうち、国家結核プログラムに紹介され、または届出られるのはごく一部である。そのため、民間医療システムを結核医療と予防の真のパートナーとし、患者届出のギャップに対処する必要がある。
ランセット委員会が結核について発表したモデル分析によると、民間セクターの医療事業者の関与を最適化することで、インドだけでも2019年から2045年の間に800万人の結核による死亡を回避できることを示唆している。121

国家結核プログラムが、結核ケア拡大のための民間セクターとの協業において直面する大きな制約は、主に資金や能力の不足である。成功プロジェクトは、民間機関に投資し、質の高い結核治療を提供するためのソーシャルビジネスモデルを作成することにより、これらの課題に対処している。それらモデルは民間保健のビジネスモデルに沿って医療事業者と協力して、品質、価格、公衆衛生の責任を向上させた。デジタルヘルスツールと革新的な引換券による償還システムの使用も、これらのプロジェクトの成功に大きく貢献している。

各国は、適切な資源を確保・導入し、以下の民間医療部門の関与戦略の適切な組み合わせを拡大するように取り組む必要がある
1. 民間の仲介組織として、民間の開業医と協力する能力とスキルを持つNGO、各セクター

一における専門家の協会など、ソーシャルフランチャイズとソーシャルビジネスモデルを確立及び拡大できる多数の独立した民間開業医の役割を共有する。

2. 大規模病院、学術機関、NGOとの連携を最適化して拡大させる。

3. 各職場において結核プログラムを開始及び拡大するために、企業及びビジネスセクターの医療サービス従事者、その家族、コミュニティを巻き込み、支援する。

4. 地域社会や市民社会に働きかけて、高品質の結核治療を提供する民間医療事業者から治療を求める促進する。

5. 簡素化された使いやすいデジタルツール、結核薬の合理的な使用、結核と特定するための認定システム、インセンティブを通じて必要な結核患者の届出を実施する。

複数の国区分において、人々が民間の医療セクターに信頼を置いているということを、当局及び国際的なドナーは認識すべきである。したがって、公共セクターと民間セクターの双方において良質かつ手頃な価格の結核医療の提供が拡大されるよう、投資は両セクターを強化するためになされるべきである。

この種の投資を増やす1つの方法は、結核医療とサービスへのアクセスを拡大するための官民混合（PPM）のアプローチを強化することだ。PPMとは、個人及び民間医療事業者、企業またはビジネスセクター、ミッション系の病院、NGO、FBOなどの、結核治療の民間医療事業者との国家結核プログラムによる関与を意味している。122 2018年、WHOの世界結核プログラム、ストップ結核パートナーシップの官民共同のワーキンググループ及び国際パートナー機関は、PPMアプローチを追求するための新しいロードマップを発表した。123付属文書は、結核医療とサービスへのアクセスを拡大するための民間医療事業者との関わりに関する現在の取り組みと課題の全体像を分析している。124

民間セクターの結核医療を強化するための官民間携手法への投資は、すべての国にとって重要だ。世界計画は、この必要性を9つの区分のうち2つで特に強調している。区分6（中程度の結核負担のある中所得国）と区分7（インド）である。ほとんどの結核治療が公共セクターによって行われている国でも、紹介と早期結核診断のために民間セクターの関与が依然として必要である。結果として生じる診断遅延の減少は、結核感染の減少に大きな影響を与える可能性がある。

保健セクター以外の業界との提携
結核を終息させるためには、職場における結核感染を防ぐこと、スタッフとその家族に結核ケアと支援を提供するための成功事例に従うこと、そして民間企業のCSR活動が必要となる。結核は主に最も生産的な年代の人々に影響を及ぼし、特定の産業（例：鉱業、保健）において、平均よりも大幅に高い感染率を示している。産業と企業、特に労働集約型の企業は、差別のない採用を含む方針で、感染のない安全な職場づくりを促進し、スタッフとその家族に高品質で安価な診療、治療、届出サービスを提供しなくてはならない。国家結核プログラムと結核組織は、企業と提携してスタッフのトレーニングを提供し、職場の結核プログラムの開発を支援し、それらのプログラムと医療システムとの間にリンクを確立することができる。

労働組合との提携
国家結核プログラムは労働組合と連携して、結核のばく露のリスクを軽減し、予防を含めた結核の医療と支援へのアクセスを提供する職場の規定を作成し、それを実施する必要がある。これは、医療や鉱業など、労働者の結核感染リスクが高い産業において、特に重要である。

労働組合は強力な職場プログラムを導入し、結核患者に対する差別をなくし、結核に関する安全な環境を確保し、外国人及び移民の治療に係る最良の方法と人権に基づく方針を実施する国内法と政策の提唱を支援する。

結核に特化したCSR活動
企業は、CSRイニシアチブの中に結核終息への取り組みを加えるべきである。これは、結核プログラム、その利害関係者及びビジネス間の連携強化の際に重要になる。民間部門からの財政出資は、多くの分野、特にイノベーション、情報技術利用及び物流管理を進歩させるために重要である。多くの人々に届く製品やサービスを提供するビジネスは、公の教育や地域社会へ働きかける機会を提供してくれるだろう。保健セクターとの提携により、結核に対する意識を高めるとともに、偏見を根絶することができる。企業は国家結核プログラムと協働することで結核のない地区や都市の形成を支援し、インパクト債やその他革新的な介入の実行可能性調査に資金を提供できるかもしれない。すべての場合において、CSRイニシアチブは、その目的を達成するために十分な資金が必要になる。CSRイニシアチブはまた、ニュースに基づき、結果を重視し、結核体験者コミュニティの権利を尊重しなければならない。
第7節 国としてのマルチセクトラル・プラットフォームの支援

国家プラットフォームとは、結核終息の目標に向けて協力して取り組むことを公約する官、市民社会、民間・ビジネスセクターによる組織間の自発的な同盟である。すべてのパートナーがそれぞれの核となる能力を発揮してプラットフォームに寄与し、リスクと責任を共有し、相互に共有された目標を達成することで利益を得る。

国家プラットフォームは、国家結核プログラムと密接に連携して、すべてのステークホルダーによる取り組みを結びつけることにより、国家結核プログラムの実施に貢献する。このため、プラットフォームの主な焦点は適宜パートナーによって決定され、国の状況によっても異なる。優先順位づけは、アドボカシーと資源の動員から、サービス提供の調整まで及ぶ。国家プラットフォームは、協調的なアドボカシーの実施と、目的達成に向けた国内の結核対策を遂行する際、国全体のアカウンタビリティを確保するための、多部門アカウンタビリティフレームワークの様々な要素を備えつける重要な役割を果たす。

第5章 結核対策におけるユニバーサルヘルスカバレッジ (UHC) と社会経済的活動

第1節 概要

90-(90)-90 ターゲットを達成し、結核を終息させるには、社会経済的行動に焦点を当てた新しい戦略が必要である。省庁は、保健省や公衆衛生部門を超えて、政府全体として協力し、結核のまん延を最大限抑制する必要がある。プライマリーヘルスケアを通じた結核医療サービスの利用可能性を担保する UHC は、結核プログラムを高品質、且つ手頃な価格で誰もが利用できるものとし、誰一人取り残さないという目標の中心にいる。

同時に、各国は UHC 達成のための戦略として結核プログラムを位置づけることで、現在の公衆衛生インフラを強化することができる。結核体験者は、壊滅的な経済的損失やその他の回避可能な困難に苦しむことなく、病気から回復し、結核に起因する障がいや機能喪失に対処するための社会的保護政策とプログラムの支援を必要としているからだ。

第2節 優先すべき行動

政府:

- 包括的な手法と統合されたサービスの提供を推進させることで、結核への取り組みを強化するという誓約を含んだ UHC に関する国連総会ハイレベル会合政治宣言でなされた約束を果たすことで、誰一人取り残さないようにする。
- 結核コミュニティにおける教育、社会的保護、貧困緩和、住宅の改善など、医療サービスと並行して非医療分野からの介入と投資を実施する。
- 結核サービスへのアクセスに対する障壁を検証し、各国の UHC 計画が抱える問題に対処し、計画サービスが社会的利益パッケージに含まれていることを確認する。
- 国家レベルでマルチセクトラルな対応をするための仕組みを構築する。セクター全体からの支援を結集し、結核への誓約を果たすためのアカウンタビリティを促進するために全国的な結核調整評議会の設立を検討する。
- 患者の費用負担の実態調査を実施して、結核患者の費用の要因を理解するとともに、調査結果を使用して財政、社会的保護の政策を改善する。
アドポカシー実施者：

- 結核に焦点を合わせることが、国連 SDGs を含む、他の国家優先事項への取り組みの成果をいかに向上させているかを調べ、その証拠を国会議員やその他の意思決定者に示す準備をする。（SDGs についての議論については「はじめに」を参照）。
- 社会福祉、労働、住宅、都市再生、農業、司法、法執行機関、その他の関連部門、文化指導者、伝統的な治療者など、従来の結核コミュニティ以外で、味方となりうる主体と連携し、巻き込む。

ヘルスプログラム：

- 結核患者を治療する医療スタッフが、社会的保護政策と、結核患者が対象となるプログラムを確実に理解する。
- UHC を追求する過程で、結核医療のプライマリーヘルスケアへの統合と、専門的な結核医療のマネジメント機能の維持との間で、適切なバランスを確保する。
- 社会的保護プログラムの実施と改善のためにオペレーショナルリサーチが確実に活用されるようにする。

研究者：

- 社会経済的行動と結核に対する進歩との関連を示す一連のエビデンスの収集を強化する。

世界的に、無料の結核診断と治療は結核対策の中心にあるが、結核体験者の個人や家族は、結核治療へのアクセスにかかる費用に苦しんでいることが多い。結核の診断と治療はほとんどの場合、公共部門において無料で提供されるが、その他の旅費や休職による機会費用といった非医療費は莫大なものになる可能性があり、結核プログラムでは、これらを個人に補償することはできない。これらの費用が高まりすぎると、結核治療へのアクセスを妨げる強力な要因となり、人口レベルでは、結核に関連する高額な費用が医療へのアクセスを抑制し、結核を終息させるのを妨げる。

結核を終息させるためには、さまざまな分野にわたって行われる医療及び非医療の幅広い介入を組み込んだ総合的なアプローチが必要になる。結核を「抑制する」ための従来の手法と異なり、結核終息戦略（End TB Strategy）は、網羅的かつ分野横断的な取り組みの中で重要な部分として、貧困の緩和と社会的保護を重視してきた。都市再生と併せて行うことで、これらの介入は予防をさらに強化し、医療へのアクセスを改善し、結核に関連する壊滅的なコストを減らすことができる。
公衆衛生システムを通じて提供される結核医療のサービスの利用しやすさと品質を改善するための投資に加え、これらの対策を実施するには、民間部門、市民社会、地域の医療従事者の参画がより必要になる。しかし、非医療従事者の介入については、より多くの種類のステークホルダーが参加しなければならない。結核を終息させるための計画と投資は、保健省だけでなく、社会福祉、金融、労働、住宅及び都市再生、農業などを担当する他の省や政府機関の任務でもある。関係する財務省の省庁は、国と国を結ぶ多極的サポートが必須であり、非医療従事者の介入についても、より多くの種類のステークホルダーが参画しなければならない。

第3節 医療サービスの改善：UHC

結核とUHCの取り組みは密接に関連している。2018年には、結核患者の約40％が適切な治療を受けられなかった。実際には、世界的に巨大となっている結核負担を考えると、結核への取り組みを拡大することは、UHC実現に向けた重要な道筋と、もともと結核ケアを提供する目的で確立された医療インフラを利用することによって医療システムを強化する可能性がある。同時に、UHCの達成に向けた世界的な取り組みは、結核サービスの拡大に加え、より手頃な価格でアクセスしやすいものとなり、品質が向上する機会を提供する。これらの理由により、社会的保護とUHCは結核終息戦略の中核となる。戦略の第2の柱は、保健と社会セクターの政策が連携して結核の社会的決定要因に対して確実に取り組むことができるようになることである。

長らく放置されていたものの、UHCは再び政治的議題の中心となっている。2019年9月、国連総会はUHCに関するハイレベル会合を開催した。国連総会によって採択されたUHC宣言126は、結核に関する国連総会ハイレベル会合政治宣言の中の公約を再確認したので、また、包括的な手法と統合されたサービス提供を推進することにより、結核への取り組みを強化し、誰一人取り残されないことを約束することを確認した。

ボックス 5.1：UHCに関する国連の政治宣言における結核についての主要な誓約

AIDSを終息させ、薬剤耐性をなくし、結核を終息させ、そして非感染性疾患を予防・制圧しようというハイレベル会合において採択された政治宣言、ならびに国連総会決議「進歩を確固たるものにし、2030年までに開発途上国、特にアフリカのマラリアを抑止・排除するための取り組みを加速させる」、これ

らを通じて形成された一連の力強い誓約の意思を再確認する。HIV / AIDS、結核、マラリア、肝炎などの感染症に対処する取り組みをユニバーサルヘルスの一環として強化し、包括的な手法と統合サービスの提供を推進することで脆弱な状態から利益を確実に維持・拡大し、誰一人取り残さないようにする。127

結核と UHC の両方に対して政府高官が政治的に注目した機会を捉え、UHC を達成するための全国的な取り組みを通じて結核医療へのアクセス確保に積極的に取り組むことが、結核プログラムにとって重要である。国の状況によっては、結核が UHC と健康保険イニシアチブの一部となるために、結核プログラムの予算、サービス提供メカニズム及びデータ収集方法の再構築が必要になる。

保健のための資金調達は、UHC に向けた世界的な取り組みの中で顕著となっており、多くの低所得国で健康保険制度の展開が加速している。しかし、結核に脆弱な多くの人々は、依然として、健康保険に加入していない。公共部門では結核の治療は無料のままであるが、結核のリスクのある人々を国民健康保険制度に入れられるように、努力する必要があります。第 4 章でのべたように、コミュニティの医療従事者が、地域社会に働きかけて、結核体験者と接触者を追跡し、さらに家族を教育することにより、結核治療を必要とする見落とさた何百万もの人々にアクセスすることができる。

ボックス 5.2: UHC とは何？

| UHC の定義は、すべての人が必要な医療サービスを確実に利用できること、これらのサービスが効果をもたらすのに十分な品質であること及びこれらのサービスの使用がユーザーに財政的苦痛を与えないことを保証することである。128 SDG 3 は、健康的な生活とすべての年齢のすべての人の幸福を促進している。このゴールは UHC の実現に焦点を当てている：財政的なリスクからの保護、高品質が必要となっている医療サービスへのアクセス、安全で効果的、高品質、且つ手頃な価格のすべての必須治療薬とワクチンへのアクセスなどである。結核に関する UHC とは、薬剤感受性結核、薬剤耐性結核、結核感染症、人畜共通結核について品質が保証された医療とサービスへ、すべての世代がアクセスでき、誰一人取り残さないことを意味している。


106
第4節 貧困削減と社会的保護活動における結核の統合

すべての年齢層において、貧困と結核の間には、多くの文書に裏付けられた強い正の相関がある。小児の結核に対する感受性の新たな評価では、小児の結核と貧困の関係が極めて強いと述べられており、貧困は、子どもに対して、結核にさらされ、感染し、病気を発症し、悪い結果を被るというリスクを負わせている主な要因である。WHO、ロンドン大学衛生熱帯医学大学院及び他の大学の専門家によって行われた統計モデルによれば、極度の貧困を終わらせ社会的保護の対象を拡大することで2035年までに結核の発生を84.3%減少させることができる。

結核治療を受けることによる直接的な医療費に加えて、多くの世帯は、移動、食事、育児、収入の損失などもあり、深刻な財政負担が生まれる。保健への支出が可処分所得の40%を超える可能性があり、それは世帯にとって莫大なものである。収入の損失は、平均して、結核患者が負担するコストの60%を占め、25%が直接経費に起因する。結核は特に貧困と栄養失調の問題を抱える家族に不釣り合いな影響を与えることから、これらのコストに対処し、莫大な支出を無くすることが重要となる。

研究結果は、社会的保護、特に治療の完遂のための保護が、結核対策の成果と保健関連の状況をどのように改善できるかを示している。多くの社会的保護プログラムは、条件付きで現金給付を設けている。このモデルは、多くのLMIC、特にブラジルやインドにおいて公衆衛生を改善するために取り入れられている（ボックス5.4：インドの国家現金給付プログラムを参照）。

ボックス 5.3: 社会的保護と政府のコミットメント

社会的排除と貧困の関係を考慮すると、社会的保護には、貧困、経済的ショック、社会的脆弱性に対処するための公的措置が含まれる。社会的保護は、収入や現物支給、サービスへのアクセスを拡大するために設計されたプログラムを通じて、人々の権利の確保をサポートする。134

社会的保護の傘下には、さまざまな社会的支援があり、結核医療の過程全体を通じて人々を支援するための多用な戦略が含まれている。結核に対する一般的な社会的支援戦略には以下の例が含まれる：

- 患者支援：全治療を完了するために行われる支援
- 財政的支援：治療費の自己負担費用を賄うため、もしくは治療中の栄養支援を提供するための給付金や払い戻し
- 健康教育：薬を最も効くものにするためのリマインダー提供。治療中の対処法の開発支援
- 心理的支援：共感、信頼醸成、思いやりを通じて、結核を経験しているという心理的負担の緩和

UHCに関する国連総会ハイレベル会合の政治宣言を支持することにより、各国政府は、2030年までに財務リスクの保護を保証し、貧しい人々、脆弱な立場にある人々に特に重点を置き、健康関連費用の支出による貧困をなくすための対策を提供することで、壊滅的な自己負担医療支出の増加から減額に転換させることを約束した。135

結核に関する国連総会ハイレベル会合の政治宣言を支持することで、政府は、以下のような目的を持った多様な支援を可能にした。

- 結核を体験した子どもたちとその介護者へ社会的保護の実施
- 社会的保護システムの資源が限られている国々における支援と能力構築の強化を実施
- 開発途上国の国内歳入をサポートし、UHCと社会的保護戦略を達成するための二国間財政支援を実施136

社会的保護の取り組みには、保健システムやその他の部門への支援が必要である。栄養プログラムは、世界食糧計画 (WFP) などに他の食品と栄養に責任を負う国家機関などと連携する必要がある。社会福祉省の中に置かれることが多い貧困層のための現金給付プログラムを、結核患者が利用できるようにする必要もある。 オペレーショナルリサーチを追

109

加で実施することにより、インパクトを示し、社会的保護を行うためのより効果的な手段を特定することができる。137

| すべての人の健全な生活と福祉のための世界行動計画（The Global Action Plan for Healthy Lives and Well-being for All） |
| 健康関連のSDGs達成に向けた集団的取り組みを最大化するため、2018年、11の国際的な保健及び開発機関が連携して、協力のためのフレームワークを開発した。すべての人の健全な生活と福祉のための世界行動計画（The Global Action Plan for Healthy Lives and Well-being for All）というこのフレームワークは、連携する（Align）、加速する（Accelerate）、説明する（Account）という3つの戦略的アプローチに基づいて構築されている。結核終息とUHC達成に向けた取り組みの進捗状況を加速させるために世界の保健機関がどのように協力しているかについては、以下のウェブサイトを参照してほしい：https://apps.who.int/iris/handle/10665/311667 |

各国は、結核サービスへのアクセスに対する障壁に関して検証を実施し、UHCアジェンダの中で対策を実施することを勧めている。WHOは、結核患者の費用調査のためのハンドブックを開発し、各国が結核患者とその家族の財政問題の要因を特定するために使用できるようにした。138結核患者を扱うスタッフは、結核患者が対象となる障がい者補助金などの社会的保護政策やプログラムを知っておく必要がある。さらに、結核は空気感染する感染症としての公衆衛生上の重要性を考えると、結核医療やサービスは、社会的便益の中のパッケージに含まれるべきである。

同様に各国は、結核体験者のための社会的保護介入を開発及び最適化するために、社会的保護に関する研究に基づいた新たな知見を利用すべきである。SPARKS（社会的保護行動研究及び知識共有）の学際的研究ネットワークは、健康、経済及びより広範な結果に対する社会的保護戦略の効果を評価している。SPARKSネットワークのメンバーは、ブラジル、インド、南アフリカ、ベトナム及びその他の国の状況における壊滅的な医療費、現金給付プログラム、社会政策、政府の社会的保護介入及び関連する問題に関する独自の研究を行っている。139


第5節  UHCにおける薬剤耐性への取り組み

薬剤耐性問題を解決するには、結核治療への普遍的なアクセスできるようにすると同時に、結核患者とその家族に質の高い治療と予防を保証するために必要な社会的支援を提供することが不可欠である。薬剤耐性結核は、不十分、規準以下、もしくは不完全な治療を結核患者が受けるたびに発症する可能性が高まる。結核、低所得者層において、一般的な生活条件、特に栄養状態を改善するためのヘルスケアを利用できない都市環境の下では、結核患者を完了するのが難しくなっており、これが薬剤耐性の出現につながっている。今日、膨大な数の人々が不完全な医療を受けている結果、耐性結核菌が継続的にまん延し、その事実が多剤耐性結核と超多剤耐性（XDR-）結核発症の最大の要因となっている。

多剤耐性結核感染は大きな負担となっており、最近のモデル分析推計によれば、全世界の1,000人に3人が多剤耐性結核に感染しながら生活しており、15歳未満においては、その有病率が約10倍高くなる。

すべての結核体験者が適切な治療を受けられるようにし、治療を完遂する支援を受けられる環境を整えることは、結核の薬剤耐性によって引き起こされる健康の安全に対する世界的な脅威を食い止めるために必要不可欠である。結核の診断、予防、治療のための新しいツールの研究開発も必要であるが、これは第6章で詳しく説明する。

第6節 都市環境の改善

今後数十年にわたって、大部分の世界の人口増加は都市部で発生し続ける。多くの低所得国、そして多くの中所得国でも、都市部は拡大する主計画・資源の不足を伴う状態で急速に成長したため、貧困層がスラム街に居住するようになった。このような開発は、都市部において、過密状態と不十分な換気、不十分な衛生状態、低栄養をもたらし、結核のように空気感染する感染症に対しても大きな要因となっている。

したがって、物理的環境を改善し、過密を減らす都市開発戦略の策定は、結核終息に大きな影響を与える可能性がある。居住エリアからアクセス良好な場所に位置する医療施設があれば、医療サービスへのアクセス改善につながる。都市部の生活条件を改善することは、過密状態と汚染された水と衛生環境によって引き起こされる、下痢や肺炎などの病気への取り組みにも大きな効果をもたらす。

第7節 法的資源

多数の法的拘束力のある条約、国の憲法が、人々に達成可能な最高水準の健康への権利を保証している。政府がその権利を適切に保護していない場合、人々は訴訟や裁判所を利用して、必須の保健サービスにアクセスする権利、差別されない権利やその他の権利を擁護するように政府に強くいることができる。

状況によっては、訴訟が結核体験者にとって重要な説明手段となり得る。米国のシカゴ大学法学部と世界薬剤耐性結核イニシアチブは、非人道的、品位を傷つける扱い、補償、強制隔離、雇用差別、過失、プライバシー権及びその他の問題など、結核に関連するさまざまな国の状況からの訴訟を含む、結核と人権に焦点を当てた有益な判例法の概要をまとめていている。

---


第8節 実現可能な環境づくり：政治的意思と政策立案

アドボカシー活動は、結核への注目を高め、すべての関連部門の行動に関するアカウンタビリティを担保するために鍵となる取り組みである。セクター横断的に同盟を結成し、それぞれの仲間を巻き込み、結核終息を促進するために影響力のある幅広い支持者を集めるためには、結核終息に従事する人々のコミュニティの内・外方の考え方を大きく変える必要がある。しかし、結核は喫緊に解決すべき社会的課題であり、結核コミュニティ単体では結核に立ち向かうことはできない。

ボックス 5.4：インドの国家現金給付プログラム

2018年3月、インド政府は結核患者のための直接現金給付システムを導入した。同プログラムは、「インドの結核終息のための国家戦略的計画 2017-2025」に含まれる社会的保護及び支援策のうちの1つである。「Nikshay Poshan Yojana」（NPY）と呼ばれるこのプログラムは、結核患者またはその近親者の銀行口座に毎月500ルピー（およそ8米ドル）の現金送付を行う。この現金は、栄養支援のために使用される。ダイレクトペネフィットトランスファー（DBT）は、テクノロジーを利用して、ターゲットを絞った透明性のある方法で市民に恩恵を届ける。結核の場合、DBTは、インドの国家結核プログラムの内4つを通じて行われている。

- Nikshay Poshan Yojana（NPY）
- 治療をサポートする人への報酬
- 部族地帯に住む結核患者への交通支援
- 民間の医療事業者と結核治療への紹介者を対象とした、結核患者の届出と治療成功に関する資本インセンティブ

Nikshay（電子オンライン結核届出システム）内で、結核患者の銀行口座の詳細と識別番号が処理されると、その情報がさらにPublic Finance Management System（PFMS）に転送され、PFMSが指定された銀行口座に資金を送付する。同じ手法は、治療をサポートする人と民間の医療事業者にも使用されている。

2018年4月から2019年3月までに、150万人以上の対象者が、NPYを通じて3,600万米ドル以上の経済的利益を受けた。その内、治療をサポートする人、部族地帯の結核患者、民間の医療事業者は、合計で300万米ドルを受け取っている。上記の支援はインドの国家結核予算で賄われている他、世界銀行からの融資を受けている。

詳細については、以下の参照のこと。
https://tbicindia.gov.in/WriteReadData/India%20TB%20Report%202019.pdf
https://tbicindia.gov.in/index1.php?lang=1&level=1&sublinkid=4802&lid=3316
ボックス 5.5: 結核終息のためのキャパシティの維持：歴史から学ぶ

2002年に実施された、WHO政策の歴史と1948年までさかのぼる指針の分析146により、政策の手法が結核のみを垂直的取り扱う手法から、一般外来患者サービスと結核医療の統合を拡大させるために数十年間で数回、方針転換をしていることが明らかになった。これらの結核対策特有の機能（研修、監督、在庫管理、コミュニケーションなど）を他の分野の活動と統合すれば、より効率的で費用対効果が高くなるという根拠に基づき、一般外来患者サービスの中に、結核に固有の管理機能が統合された。1980年代の医療制度改革により、従来、結核プログラムは専門的機能であったものがそれを統合することに成功した。

しかし、その結果、国家結核プログラムは多くの国で解体された。この解体により、利用可能な結核専門知識が減少し、結核研究への支援が減り、HIVの大流行が結核の新たな流行を引き起こし始めたのと同じように、大きな資源のギャップが生じた。緊急の結核対応の必要性により、各国は1990年代を通じて結核プログラムを再建するようになった。この10年で、標準的な結核対応のための戦略としてDOTS（直接観察下の短期化学療法）を国際的に採用した。2000年以降、各国は結核のサービスと機能を保健システムの他の分野と統合することを再開している。

この歴史を振り返ると浮かび上がった教訓は、垂直的手法も、結核と保健システムの過度の統合も完全には成功していないというである。垂直的手法と統合的手法は相互に排他的ではない。結核を終息させる最良の方法は、特定の活動（計画、研修、疾患の監視、評価など）部分については、結核の専門性を維持し続け、プライマリーヘルスケア内で結核サービスの提供を統合し、ステークホルダーを結核終息のため保健セクター以外から加え、そして結核を国の高い政治、政策レベルに保つための効果的なアドボカシーに注力する、という混合戦略である。

国内のUHC及び薬剤耐性戦略とも一致する結核の多部門の政策決定を監督することになると、結核を他のプログラムとよりよく統合するための1つの方法は、エイズ委員会同様、国が国レベルで結核調整協議会を設置し、既存の全国保健委員会と、より緊密に連携することだ。国会は、結核体験者の人権を守るという大義のもと、保健省以外の省庁も関与させることができ、財務省が予算を確保することを保証し、各家庭において適切な換気を可能にするために必要に応じて、都市の混雑に対処するために、建築基準法を改正することができる。

国家結核プログラムの責任者は、複数の部門や省庁にわたって調整された取り組みを主導するのに最適な立場とはいえない。しかし、十分な資源と高官による政治的支援があれば、国家結核プログラムの責任者は、結核を活動に組み込む方法について他のプログラムに効

果的な助言を行うことができる。アドボカシー実施者、結核回復者、結核体験者コミュニティとその仲間たち、そして、ビジネス界と文化的な指導者などが働きかけをすることができたとしても、最終的には、大臣と政府高官のコンソーシアムが政治的意思を表明する必要がある。

政治的意思は、たとえ支持者、結核回復者、結核体験者コミュニティとその提携先、そしてビジネス界と文化的な指導者によって支援されたものであっても、大臣と政府高官から共同で出されたものでなければならない。

どのように議論を組み立てるかは重要である。結核に焦点を合わせることで、他の国連SDGsの達成に向けた成果も上げることができる。また、社会的保護への介入は複数の病気に対して、同時にインパクトを与える可能性が高く、費用対効果が高く価値のあるものである。結核のリスク要因は多様であるため、政策的手法には結核固有（TB-specific）の手法と結核に配慮した（TB-sensitive）手法の双方を組み合わせるべきである。前者は結核患者に直接到達し、特定の結核指標に影響を与えることを目的とする介入であり、後者は住宅や換気の改善、栄養改善を目的とした農業政策などにより間接的に結核罹患のリスクを減らすものである。

政策決定者的方向性を正し、社会的保護のための資源を割り当てるための裏付けを、意思決定者と国会議員に双方に提供するために、結核と社会経済的行動の関連性を示すより良いデータの収集が望まれる。結核への対処には、薬の合理的な使用、感染防止に向けた規制、健康保険制度の改善のための資金調達、そしてUHCを達成するための保健システムのキャパシティ向上などの大規模な改造が必要となる。
ボックス 5.6：日本：UHC への道筋として結核治療を拡大

1961年に日本は UHC を達成した。1950年代、結核は日本において死亡原因の第1位であり「亡国病」として広く知られていた。結核はまん延していたため、総医療費の20%以上が結核に割り当てられた。1951年に結核予防法が制定され、その後、厚生省は公衆衛生システムの強化を通じて結核に対する大規模なキャンペーンを開始し、1958年までに結核患者数を25%減少させた。147

結核治療は以下的方法により急速に拡大された：

- 民間セクター、コミュニティ、個人と一緒に政府を共同で関与させる。
- 結核医療とサービスの適用範囲を拡大するために使用された、国民健康保険プログラム内に専用の結核予算を作成する。
- 全国結核キャンペーンへの地方自治体の参加を促す。148

日本の結核キャンペーンの過程で導入されたインフラストラクチャー、システム、プロセスは、日本がUHCを達成する機会を生み出した。

---

第6章 新しいツール

第1節 概要

今日あるツールでは、結核の終息への歩みを加速することはできても、実際に終息させるまでには至らない。基礎科学研究へのより大きな投資だけでなく、新しい診断技術、治療方式、ワクチンへの緊急追加投資が必要だ。さらに、承認された治療法と介入の実用性を検証し、新しいツールが承認された際のアクセスの障壁に対処し、可能な限り効率的かつ効果的な方法で新しいツールを導入し、アクセスを拡大するには、オペレーションリサーチを進めることも重要である。

新しいツールの開発においては、2018年に公開された2種類の第IIb相ワクチン臨床的有効性試験からの肯定的な結果、新しい迅速な分子結核試験と薬剤耐性の試験により有望な技術の出現、超多剤耐性結核の治療のために米国食品医薬品局（FDA）によって承認された新薬の開発など、過去5年の間に素晴らしい進捗があった。これに基づき、改良されたワクチン、治療薬、判明の結核研究開発を引き続き推進するために、各国政府は結核研究開発への資金を年間およそ7億米ドルから年間20億米ドル以上に増やすことを約束した。この資金援助に加えて、基礎科学研究への世界的な投資も、年間予定4億米ドルまで増加する必要がある。新しいツールの研究開発のために何が最も有望なアプローチなのかを理解するためだ。ただし、この投資を1年でも遲らせると、結核の発症が480万人増え、67万人が亡くなり、治療費だけで51億米ドルが追加負担となる。

研究開発資金のギャップをなくし、よりよい研究を可能にする環境を作るためには、結核研究者、結核回復者、結核体験者コミュニティが参画し、一致団結したアドバイソリーが必要になる。また、政府が誓約を果たすよう協力して働きかけを行う必要もある。研究プロセスのすべての段階において、結核体験者コミュニティが関与することは、新しいツール開発とツールへのアクセスを提供する上で、社会的、法的、政治的、経済的障壁を特定し克服するのに役立つ。そのような関与は研究イニシアチブの最終的な成功には不可欠である。
第2節 優先すべき行動

新しいツールの開発を行うためには、国の政府、官民の研究機関、生物医薬品企業、慈善及び金融セクター、市民社会、結核体験者コミュニティが協働することが必要になる。アドボカシーは、これらの行動のアカウンタビリティを確実にするために引き続き重要になる。

1. 年間13億米ドルを超える結核研究開発資金のギャップを埋めるために、年間20億米ドル以上を結核の研究開発に充てる。新しい資金は、製品開発パートナーシップ(PDP)、BRICS結核研究ネットワーク、革新的な資金調達メカニズムやインセンティブを含む研究機関、パートナーシップ及びコーポレーションへの支援を増やすために使用される必要がある。表6.1は、治療薬、診断薬、ワクチン及び基礎科学研究のための結核研究開発に対する資本ニーズをまとめたものである。

<table>
<thead>
<tr>
<th>ツール</th>
<th>2018〜2022年の総資金ニーズ</th>
</tr>
</thead>
<tbody>
<tr>
<td>薬</td>
<td>6,800</td>
</tr>
<tr>
<td>診断技術</td>
<td>916</td>
</tr>
<tr>
<td>ワクチン</td>
<td>3,067</td>
</tr>
<tr>
<td>基礎科学研究</td>
<td>2,000</td>
</tr>
<tr>
<td>合計</td>
<td>12,783</td>
</tr>
<tr>
<td>年間の資金調達ニーズ：</td>
<td>2,557</td>
</tr>
</tbody>
</table>

*水準展開のための資金は含めない

2. 新しいツールの開発と使用を加速する。研究開発の優先事項は以下を含む。

診断:
- 診断またはトリアージのために、迅速で手頃な価格の非痰ベースの検査法を開発する。
- 重要な薬品の正確なDSTを開発する。
- 結核感染を検出し、発症のリスクを検査するためのツールを改良する。

薬:
- 臨床パイプラインにおいて革新的な作用機序を持つ新薬候補の数を増やす。
- より優れた新しい治療法の開発を進める。
- 結核治療と結核感染治癒の双方に対する治療期間を短縮するための戦略に焦点を当て
ワクチン：
- M72 / AS01E ワクチン候補の後期段階の評価を含む、ワクチン候補の開発において後期段階試験を加速し、各国と協力して、認可と立ち上げの成功に備える。
- 次世代のワクチン候補の開発を加速し、影響を受けるすべての団体に対して非常に効果的な結核ワクチンを確保する。
- 新しい結核ワクチンの概念を検証し、ワクチンによる防衛能力のメカニズムと相関関係を調査する。

3. 新規結核診断薬、医薬品、ワクチンを発見するための最も有望なアプローチをより良く理解するために、基礎科学研究に4億米ドルを投資する。

4. 次の方法により、結核の研究開発を可能にする環境を構築する。
- 国の結核研究開発戦略の開発、資金提供、そして戦略の実施を行う。
- 結核高負担国及び多剤耐性結核患者の多い国において臨床試験を実施するために、研究センターのキャパシティ向上を図る。
- 臨床開発から薬事申請、地域ごとの承認までの薬事プロセスを合理化して、他国ですでにテストされ、安全で効果的であることが示されている新しいツールを評価するための国のキャパシティを向上させる。
- 有能な分野への結核研究を実施している人材へ投資を維持する。
- 特定の国及び地域背景内において、新しいツールを最適に実装する方法を理解するための調査を支援する。

5. 新規薬剤、診断法、ワクチン用に開発されたアクセス改善のための包括的な戦略を通じて、新しいツールへのアクセスを最適化させる。アクセスへの社会的、政治的、法的、経済的障壁を特定し、それを克服するのに役立つオペレーショナルリサーチを活用する。

6. 効果的なアドボカシー活動を実施する。コミュニティシステム、研究基本能力、さらに結核体験者コミュニティの研究への有意義な関与を強化する。そして、結核体験者コミュニティのメンバーやアドボカシー活動家を意思決定組織と専門家の検討会に参加させる。
第3節　結核研究計画の前進

結核の研究開発への投資を持っている時間的な余裕はない。新薬、診断薬、効果的なワクチンがなければ、私たちは結核の発生率と死亡率を大幅に削減することができず、何百万もの人々がこの病気で亡くなるだろう。政府は、結核研究のための国家計画を策定し、それに基づいて資金を提供することによって、または結核を国家の健康研究の計画に組み込むことによって、結核研究開発をさらに支援する必要がある。研究開発の取り組みは、ニーズと裏付けに基づいたものであり、手頃な価格、効率、公平性及び協働という原則に基づく必要がある。

次の項では、新しい結核ツールへ投資を行う際の優先順位、新しい投資により予想されるインパクト及び過去5年間で達成された研究開発の成果を示す。

第1項　新しい結核ツールの研究開発のための戦略的フレームワーク

表 6.2：新薬の戦略的フレームワーク 2018–2022

<table>
<thead>
<tr>
<th>目的</th>
<th>マイルストーン</th>
<th>主な活動</th>
<th>2018〜2022年に必要な資金（100万米ドル）</th>
</tr>
</thead>
<tbody>
<tr>
<td>結核治療薬の基本的な発見を通じてパイプラインを維持する。</td>
<td>第1相試験に入る新しい治療候補薬</td>
<td>新しい化学物質のスクリーニングと選択化を急ぐ。バイオマーカーを検証する。臨床効果をより予測できる動物モデルを開発する。新しい薬物標的を特定する。</td>
<td>1,400</td>
</tr>
<tr>
<td>臨床試験現場のキャパシティの確保</td>
<td>結核の臨床試験に利用できる、臨床試験の実施基準（GCP）を満たしている臨床試験現場でトレーニング方法を特定し、維持、提供する。</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>GLP)に準拠した現場 の数を増やす。</td>
<td>薬剤感受性結核の2〜 4か月の治療方式の第 II相試験を完了し、可能 な場所においてす べての活性性結核の 普通的な治療方式を 完了する。</td>
<td>臨床試験の実施：より短期間の新たな治 療方式を2つ3つ展開するために、薬理 動態試験、第I相、第II相（EBA、SSCC、 薬物相互作用試験）ならびに第III相試 験を実施する。</td>
<td>2,000</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>多剤耐性結核に 対する、安全で 有効性がより高 く、より短期間 で完了する治療 方式の開発</td>
<td>多剤耐性結核のより 短期間の治療方式に ついて第III相試験を 完了する。</td>
<td>臨床試験の実施：より短期間の新治療 方式を2つ3つ展開するために、薬理動 態試験、第I相、第II相ならびに第III相試 験を実施する。</td>
<td>800</td>
</tr>
<tr>
<td>成人の治療と並 行し、子どもの 治療法を改善す る。</td>
<td>成人向けに開発中の 新しい治療方式と組 み合わせて、子ども用 の処方と臨床研究を 終了させる。</td>
<td>新しい治療方式の試験に対して可能な 限り早期段階で子どもたちを参加させ る。子どもたちのあらゆる形態の結核の 早期段階において、安全で信頼性が高 く、使いやすい治療方式を開発する。子 童に対する薬物相互作用研究が各種 規制により要求される場所では、同研究 を実施する。</td>
<td>200</td>
</tr>
<tr>
<td>結核感染に対する、より安全で 効果の高い治療 方式の開発</td>
<td>結核感染に対する、よ り安全で効果の高い 治療方式の第III相試 験を完了する</td>
<td>治療期間の短縮を目的とした結核感染 の新しい治療方式の第III相試験を実施 する。</td>
<td>120</td>
</tr>
<tr>
<td>新しい結核薬と 治療方式を国レ ベルで採用す る。</td>
<td>特に高負担国におい て、患者は、新たに承 認された新薬と治療 方式にアクセスで きる。</td>
<td>国の政策とガイドラインに新薬と治療 方式を含める。国の規制プロセスを促進 するためのメカニズムを実装する。主要 なステークホルダーを関与させる。医療 従事者の広範な研修を実施する。</td>
<td>700</td>
</tr>
<tr>
<td>医薬品開発とア クセスに関する 全工程でコミュニ ティと市民社</td>
<td>コミュニティと市民 社会は、創薬と開発の バイプラインに沿っ たすべての意思決定</td>
<td>諮問委員会、プロトコル研究設計、科 学ネットワーク及び結核治療薬開発に関 関するその他のフォーラムにコミュニ ティと市民社会の代表を参画させる。</td>
<td>90</td>
</tr>
</tbody>
</table>
会を関与させる。

プロセスとフォーラムに参加する。

必要とされる資金合計 | 5,710
表 6.3：新しい診断の戦略的フレームワーク 2018–2022

構想:
適切で手頃な診断ソリューションを適切な環境において利用できるようにする。これにより、すべての人々、結核のすべての形態で早期かつ普遍的な診断を実現し、診断結果を治療につなげ、継続的な薬剤耐性監視の基礎を提供することにより、結核の終息に向けた取り組みを促進する。

目標:
新しい診断ツールとそれに伴うソリューションの開発。
1. 正確な検査により結核患者の発見方法を改善し、医療システムのすべてのレベルで患者中心の使用を可能にする。子どもや HIV 感染者を含むすべての集団、脆弱な集団、移民、医療サービスへのアクセスが不十分な人々を含む結核リスク集団を対象とした、結核患者へのより良い働きかけを保証する革新的な診断戦略を開発する。
2. 適切かつ効果的な治療を可能にし、死亡率と進行中の感染を減らし、さらに既存の薬剤及び新規の薬剤に対する耐性を迅速かつ簡単に検出することにより、薬剤耐性を防止する。
3. 治療の不足をより早く検出するための治療モニタリング・治療判定、迅速な薬剤感受性試験（DST）の新しい手法を開発する。
4. 潜在性結核感染から活動性結核病へと進行するリスクが高い人々を確実に特定する。これは的を絞った予防的治療を導入して、更なる感染を減らすためである。

<table>
<thead>
<tr>
<th>目的</th>
<th>中間目標</th>
<th>主な活動</th>
<th>2018～2022年に必要な資金（100万米ドル）</th>
</tr>
</thead>
<tbody>
<tr>
<td>新しい診断ツールとソリューションの開発を可能にするための重要 \ な知識の可用性の確保</td>
<td>研究により、新しいマー \ カーを発見して、検証するための能力を構築・改善する。</td>
<td>さまざまなプラットフォームと手法を使用して、バイオマーカーの発見に関するコンソーシアムを支援する。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. 臨床現場での活動性結核の検出</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. 変異の同定と特徴付け</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. 活動性疾患への進行</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. 治療モニタリング</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. 有望なバイオマーカーの検証</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. バイオマーカーデータベースの維持</td>
<td></td>
</tr>
<tr>
<td>新しい結核診断法の開 \ 発と検証に重要な臨床</td>
<td>標本の収集、リポジトリのメンテナ \ ンスと拡張、データ管理、品質保証</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

194.5
32
参照資料へのアクセス増加を確保する。

<table>
<thead>
<tr>
<th>品質管理に従事し、次のことを行う。</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 標本バンク</td>
</tr>
<tr>
<td>b. 菌株バンク</td>
</tr>
<tr>
<td>c. 小児検体バンク</td>
</tr>
<tr>
<td>d. 肺外結核標本バンク</td>
</tr>
<tr>
<td>e. 治療モニタリングのための標本バンク</td>
</tr>
<tr>
<td>f. 胸部 X 線画像のデータリポジトリ</td>
</tr>
</tbody>
</table>

薬剤耐性結核の検出のための分子テストの開発に影響を与える結核菌（M. tuberculosis）の遺伝子変異とその臨床への関連性の評価をサポートする。

<table>
<thead>
<tr>
<th>国際的なゲノム及び臨床関連データの集中リポジトリを開発及び維持する。品質と標準化について評価する。</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 結核菌（M. tuberculosis）群からのシーケンスと関連するメタデータを格納するデータベースを開発し、そのデータを使用して結核薬耐性に関連する変異を検証する。</td>
</tr>
<tr>
<td>b. より広域の菌株の配列情報を確保するために、多くのグループからの貢献を支援する。</td>
</tr>
<tr>
<td>c. 努力を継続するためにまずデータベースを維持する。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>初期開発パイプラインの効率を高め、大規模な試験の前の意思決定を支援する。</th>
</tr>
</thead>
<tbody>
<tr>
<td>eHealthソリューションの開発を支援するための調査とコンサルティングを行う。</td>
</tr>
</tbody>
</table>

| 潜在的な影響を評価し、最も効果的な方法でこれら研究の計画を立てるために、目的3で計画された評価・実証研究を実施する。 |

<table>
<thead>
<tr>
<th>eHealthソリューションの開発を支援するための調査とコンサルティングを行う。</th>
</tr>
</thead>
<tbody>
<tr>
<td>患者憲章・倫理基準を定義し、患者の識別子についての共通認識を形成する。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>目的1（知識のギャップへの対処）合計</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>結果が確実に患者の治療につながるように、新しい診断子もしく H IV 感染者を含むすべての患者的医療現場において、活動性結核の診断のための検出開発、技術的及び臨床的評価を、以下の開発中の対象において支援する。</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 塗抹検査に代わる方法とソリ</td>
</tr>
</tbody>
</table>

| 142.5 |
| 25 |
| 31.5 |

| 284.5 |
| トールの組み合わせを、付随するソリューションのパッケージと組み合わせて開発する。 | 薬剤耐性を検出するための試験とソリューションを開発する。 | 薬剤耐性を検出するための試験とソリューションを開発する。
| --- | --- | --- |
| ユーション | 試験開発、技術的及び臨床的検証を、以下の開発中の対象において支援する。
a. 検体レベル向け次世代薬剤感受性試験（DST）
b. 妥当である場合には MIC 試験を含む、新薬、転用医薬品、新薬治療方式に関する薬剤感受性試験（DST）
c. 疼を直接用いる次世代シーケンシング（NGS） | 目的製品プロファイル（TPP）を推奨し修正する。試験開発、ならびに同開発において、免疫活性化バイオマーカーの検証と認定を含む、技術的及び臨床的検証を実施する。
| 疾病の進行リスクを予測するための試験とソリューションを開発する。 | 病原体を鑑別し、抗生物質の過剰投与を減らすのに役立つ症候群手法を支持する検査法を開発する。 | 病原体を鑑別し、臨床的に実行可能な結果が得られるように、呼吸器症状のある患者のプライマリーヘルスケアサービスへの初診時に症候群診断に適したバイオマーカーを検証及び認定する。
| 治療モニタリング・治験確認のための試験とソリューションを開発する。 | 目的製品プロファイル（TPP）を開発する。開発試行を行い、分子技術やバイオマーカーなどの技術的及び臨床的検証を実施し、認定する。 | 目的製品プロファイル（TPP）を推奨し改定する。診断新技術に接続性を統合し、eHealth アプライケーションと集約プラットフォームを開発する。

| 60.5 | 33 | 29 | 9 | 8 |
### 目的2（新しい試験とソリューションのポートフォリオ開発） 合計 282

<table>
<thead>
<tr>
<th>目的</th>
<th>内容</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>新しい検出戦略、症例発見、最適化された使用、革新的なデリバリーメカニズムへの代替アプローチを含む、新しい診断ツールとソリューションの組み合わせを評価し、患者の利益を実証し、保健システム全体で起こり得る影響を予測する。</td>
<td>上記で特定された新しい検査とソリューション及び症候群アプローチについて、臨床試験及びデモンストレーション研究で評価を実施する。</td>
<td>94.5</td>
</tr>
</tbody>
</table>

### 目的3（評価、実証、影響） 合計 166.5

<table>
<thead>
<tr>
<th>目的</th>
<th>内容</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>新しいツールとソリューションを展開する。</td>
<td>以下を実施する。</td>
<td>70</td>
</tr>
<tr>
<td>新しいツールの適切な規模拡大のため、検査室の能力を強化する。</td>
<td>a. 数学的モデル分析を開発する</td>
<td>228</td>
</tr>
<tr>
<td>新しいツールの適切に使用されていることを確認する。</td>
<td>a. 活動性結核を90％検出し、ハイリスク集団の薬剤耐性例を100％検出す新しい技術を少なくとも1つ展開するための装置と消耗品を調達する。</td>
<td>2,300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>患者中心の診断と検査の分散化を確保する。</td>
<td>d. 供給管理面のトレーニング支援</td>
<td></td>
</tr>
<tr>
<td>結核と HIV の検査サービス（HIV 蔵査集団での結核診断）及び肝炎などの合併症のスクリーニングを統合する。</td>
<td>a. 診断紹介システム（検体輸送、患者/診療所への結果配信、患者のフォローアップ）</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>b. モバイルヘルス・eヘルスソリューション、結果の送信</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. 診断に必要な時間を補うための、患者へのインセンティブシステム</td>
<td></td>
</tr>
<tr>
<td>民間セクターを確実に取り込む。</td>
<td>a. 民間セクターが推奨されたツールを使用するインセンティブ</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>b. 民間セクターで使用されているツールの実験室の強化と外部品質保証</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. IPAQT や JEET などのモデルの規模拡大</td>
<td></td>
</tr>
<tr>
<td>国の政策変更の速さと国内規制プロセスを維持する。</td>
<td>a. 多少なりとも問題のある国（中国、ロシア、ブラジル）への規制プロセスの調和</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>b. 国家政策の変更と採択の支援（現地での費用対効果と検証研究）</td>
<td></td>
</tr>
<tr>
<td>ステークホルダー（国家結核プログラム、保健省、技術省、調達機関、資金提供機関、患者コミュニティの代表者）への意識付けを行う。</td>
<td>アドボカシー団体と調整する。国家結核プログラム、保健省、技術調達及び資金提供機関、患者代表を含むワークショップを開催する。</td>
<td>10</td>
</tr>
<tr>
<td>日常のプログラム設定</td>
<td>さまざまな検査区分、シナリオ、さ</td>
<td>30</td>
</tr>
</tbody>
</table>
で診断サービスを提供するための最善の方法についてオペレーションナルリサーチを実施する。患者中心の手法を確保し、国家結核プログラムが使用するコストと資源を推定する。

価格を下げるために、製造及びその他の市場介入の規模を拡大する。

新薬剤感受性試験（DST）及び追加のグループC薬に対するDSTを、各国において導入する。

2022年において、国のシーケンス処理能力を拡大する。

<table>
<thead>
<tr>
<th>項目</th>
<th>さまざまな条件（多剤耐性の多寡、HIVの多寡、異なる地理条件、結核感染検査、予防的治療対象、接触者追跡の戦略）を対象にする調査を実施する。</th>
<th>商品化及び成功した事例の規模拡大への投資</th>
<th>新薬の薬剤感受性試験（DST）、必要に応じた臨床濃度の修正、次世代のターゲットシーケンシングの設計と実装に必要な知識の収集を含む、適切なテスト戦略とプロトコル、及び表現型テストと分子検出のための外部品質保証を導入する。</th>
<th>受託検査施設において次世代シーケンシング（NGS）を実行する能力を実装し、データ分析のトレーニングと支援を提供。このトレーニングと長期的支援を提供するための主要な推進力として、国家を超えてレファレンスラボの機能を確立する。</th>
</tr>
</thead>
<tbody>
<tr>
<td>目的4（新しいテストの可用性と適切な使用）</td>
<td>合計</td>
<td>2,854</td>
<td>806</td>
<td>3,587</td>
</tr>
<tr>
<td>水平展開あり</td>
<td></td>
<td></td>
<td></td>
<td>(水平展開あり)</td>
</tr>
<tr>
<td>水平展開なし</td>
<td>73</td>
<td>(水平展開なし)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### 表 6.4: 新しいワクチンの戦略的フレームワーク 2018–2022

**概要:**
すべての年齢層及び集団の結核を安全に予防する、より効果的な新しいワクチンを開発する。

**目標:**
新しい診断ツールとそれに伴うソリューションの開発:
1. 結核症を予防し、感染、進行、再活性化、再感染を防ぐための新しいワクチンを開発を通じて結核感染を阻止する。
2. 結核ワクチン開発のすべてのプロセスに対してアクセス戦略を組み込み検討する。
3. 結核ワクチンの研究開発における地域社会の参画をさらに強化する。

<table>
<thead>
<tr>
<th>目的</th>
<th>中間目標</th>
<th>主な活動</th>
<th>2018～2022年に必要な資金 (100万米ドル)</th>
</tr>
</thead>
<tbody>
<tr>
<td>結核ワクチン候補の臨床バイプラインを継続的に前進させる。</td>
<td>ポータフォリオマネジメントやステージシーケンスリング基準とてえた経営手法を援用して、臨床試験によりワクチン候補やそのアイデアを進展させる。</td>
<td>M72 / AS01Eワクチン候補の第III相試験を開始する。</td>
<td>1,250</td>
</tr>
<tr>
<td>可能な限り開発初期段階で最も有望なワクチンを特定し、資源の使用を最適化した新規の第II相臨床試験を実施する。</td>
<td>大規模な臨床試験をサポートする十分な能力を確保する。</td>
<td>大規模な臨床試験（第IIa / III相）を支援するために製造の規模を拡大する。 GCP標準で臨床試験を実施するために、さまざまな地域での臨床試験と検査室の能力を拡張する。</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>インシデントポインタとなる有病率と発生率を評価するための研究を、臨床治療の対象となる集団において実施する。</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>結核ワクチンの研究開発を加速するためのヒトチャレンジモデルを開発してテストする。</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>結核感染の発生頻度と蔓延率、結核の罹患率、横断的有病率に関する研究を複数地域で実施する。</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>防御免疫応答について学ぶために、人間に対する研究と並行して非ヒト霊髄類（NHP）チャレンジ研究を完了させる。防御免疫応答に関する主要な仮説を検証する。</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>コンソーシアムを支援して、開発及び前臨床段階を通じてヒトチャレンジモデルを前進させ、臨床段階を開始する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>非ヒト霊髄類（NHP）チャレンジ研究を実施して、防御免疫の相関関係を決定する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>非ヒト霊髄類（NHP）研究の結果をヒトの有効性試験の結果と比較する。モデル検証のため逆翻訳する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>複数の実験医学研究を実施して、さまざまな仮説を検証する。</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>目的2（実験医学） 合計</th>
<th>290</th>
</tr>
</thead>
<tbody>
<tr>
<td>先駆的研究、発見研究により重点を置く。</td>
<td></td>
</tr>
<tr>
<td>病気からの防衛と発病に関する免疫の関連を解明する。新しいワクチン標的を明らかにする。</td>
<td></td>
</tr>
<tr>
<td>前臨床の包括的な宿主応答の分析によって免疫機序と関連要因を明らかにする。</td>
<td>60</td>
</tr>
<tr>
<td>バイオマーカーの発見をすべての第 IIb 相及び第 III 相試験に統合する。</td>
<td></td>
</tr>
<tr>
<td>防御免疫のさまざまなメカニズムを探る（例：粘膜、代替細胞標的、自</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>目的3（初期段階及び発見研究）</td>
<td>合計</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
</tr>
<tr>
<td>動物モデルを改善する。</td>
<td>300</td>
</tr>
<tr>
<td>感染症の予防または疾病の再発または自然感染の遅延のシナリオを見つけるため、目的に合った動物モデルを開発して最適化する。これにより、免疫化された、または潜在的に感染した個体、もしくは同時感染または併存疾患の条件下においてワクチンの有効性の評価を可能にする。</td>
<td>150</td>
</tr>
<tr>
<td>前臨床段階の企画案の基礎作りと多様化、さらに候補の優先づけを推進する。</td>
<td></td>
</tr>
<tr>
<td>モデルを臨床シナリオに照らして評価し、認定・検証を行う。</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>目的4（動物モデル）</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>前臨床及び臨床の使いやすさを改善する。</td>
<td>150</td>
</tr>
<tr>
<td>前臨床と臨床の間での前方及び後方翻訳・検証により、試薬を標準化し、分析を調和させ、関</td>
<td></td>
</tr>
<tr>
<td>ステークホルダーの意見を収集し、今後の道筋について合意に達する。</td>
<td>1</td>
</tr>
<tr>
<td>研究室や研究施設に試</td>
<td>30</td>
</tr>
</tbody>
</table>
第2項　新しいツールに関する研究開発の進捗状況

2015年11月の世界計画が発表されてから、新しいツールの開発は大きく進展した。これらの進歩は、研究パイプラインへの民間部門の寄与とともに、学術、非営利組織、政府が支援する研究所への主に持続的な研究資金を通じて可能となった。新しいツール開発における主要な中間目標と進捗状況を以下にまとめると。

### 目的5（試薬と分析） 合計
<table>
<thead>
<tr>
<th>目的</th>
<th>連続信号をベンチマークする。</th>
<th>薬を提供するプログラムを拡大し続ける。</th>
<th>ステークホルダーの共同認識に基づいて必要な分析法を開発する。</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>青年期及び成人期のワクチン接種キャンペーンの基礎を築く。</td>
<td>戦略的なアクセスと実装の調査を実施する。</td>
<td>商品のコスト、結核の費用対効果、完全な価値提案、医療の経済評価、国のワクチンの準備状況、ワクチンの状況を調査する。</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td></td>
<td></td>
<td>71</td>
</tr>
</tbody>
</table>

### 目的6（戦略的アクセス調査の実施） 合計
<table>
<thead>
<tr>
<th>目的</th>
<th>結核ワクチンの研究開発にコミュニティが参画する。</th>
<th>研究へのコミュニティの関与を強化する。</th>
<th>臨床試験にはコミュニティの助言・関与計画があり、コミュニティの代表者が研究の設計、実施、普及に関与するようにする。</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ワクチン開発者は、初期段階の研究から臨床試験及び認可までの研究開発プロセスにコミュニティのステークホルダーを積極的に関与させる。</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
</tbody>
</table>

### 目的7（コミュニティの関与） 合計
<table>
<thead>
<tr>
<th>目的</th>
<th>必要な資金 総合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,763</td>
</tr>
</tbody>
</table>

第2項　新しいツールに関する研究開発の進捗状況

2015年に前回の世界計画が発表されてから、新しいツールの開発は大きく進展した。これらの進歩は、研究パイプラインへの民間部門の寄与とともに、学術、非営利組織、政府が支援する研究所への主に持続的な研究資金を通じて可能となった。新しいツール開発における主要な中間目標と進捗状況を以下にまとめる。
ボックス 6.1: 新しい1HP療法により結核の予防的治療が1か月に短縮

結核予防に大きな進展がなければ、結核終息までのシナリオは現実的ではない。それでも、南アフリカの注目すべき例外を除いて、結核予防は高負担国における結核治療の中で否定され続けてきた。結核終息のための戦略の中核として、結核予防を無視することは止めなくてはならない。結核ワクチンの開発が目覚ましく進展していることに加えて、結核予防に関する研究の成果として、より効果的な治療法が開発された。新たな治療法は、投薬期間がより短く、結核感染者にとって治療を完了することがより容易になるものである。現在利用可能なもののうち、最も短期間で実施できる予防治療法は1HPである。それはリファペニンとイソニアジドを、毎日、2週間に渡って服用するものである。13歳以上のHIV感染者3,000人を対象とした第III相臨床試験では、1HPが結核予防的治療の標準となっているイソニアジドの9か月服用と同様の機能を果たした。結核予防治療方針へのアクセスを拡大するために克服すべき主要な課題の1つは、すべての国でリファペニンの公平な可用性を確保し、手頃な価格で提供することである。

新しいワクチン

- 結核ワクチンの研究開発は、数十年の中で最も期待できる段階にある。2019年8月の時点で、少なくとも14の新薬候補が臨床試験に入っており、そのうち7つは第IIb相または第III相の段階に入っている。他の多くのワクチン候補が前臨床段階及び開発の初期段階にある。149
- ワクチン候補M72/AS01Eの第IIb相有効性試験の結果は、ワクチンが潜在性結核感染症の青年及び成人の活動性結核症の発症を防ぐことを初めて示した。
- 感染防止試験デザインを使用した最初の第IIb相TBワクチン臨床試験の結果から、BCG再接種は、高リスクの、結核に感染していない者の集団において、結核感染を防ぐのではないかと思われる。
- 新規ワクチン候補CMV-TBと静脈内及び粘膜BCGは、非ヒト霊長類（NHP）モデルにおいて過去にない感染抑制力を示した。
- 訓練された自然免疫と粘膜免疫の役割を解明することで、宿主の防御免疫反応、ワクチンがどのように防御を誘導するかについて理解が深まった。
- 結核ワクチンの治験のための適切な参加型診療ガイドラインが2017年に発表され、臨床試験現場での地域社会の関与をリードするためのネットワークが構築され、活動を始めている。

ボックス 6.2: POC診断テストとしての FujiLAM の可能性

富士フィルムの SILVAMP TB LAM（FujiLAM）は結核を検出するための新世代の LAM 試験である。検査はすべての年齢層の人から簡単に採取できる尿サンプルを使用して行われる。リポアラビノマンナン（LAM）は結核菌が産生する分子であり、免疫系が産生する白血球を不活性化することで結核菌のコロニー形成を可能にしている。

LAM の存在を検出する診断法は、FujiLAM のみではないが、FujiLAM は、HIV 感染者の結核を診断するために WHO が以前に推奨した LAM 試験よりも、LAM の検出感度が優れていることが示されている。疾を用いる Xpert MTB / RIF テストを用いた参照標準と比較して、WHO より推奨された LAM 試験では LAM の検出に 42% 有効であったが、FujiLAM は 70% 有効であった。1時間かからずに試験結果が出る。同試験は医療従事者が複雑な器具を使わずに最小限のトレーニングで使用できる。

ただ、結核の POC 診断テストとしての FujiLAM の可能性を評価するには、さらなるテストが必要になる。この検査の最大の魅力は、痰を吐き出すことが困難な人、特に子ども、医療施設の入院患者及び重症の HIV 感染者にサービスを提供できるようになることだ。将来的には、現在利用可能な喀痰を用いた検査と同じくらいの高い LAM 検査が導入され、結核の診断に大きな変化をもたらすだろう。

新薬

2016 年、WHO は多剤耐性結核の標準化された短期間の治療方法について新しい指針を公開した。151

- 少なくとも 8 つの新しい化学物質が、初期の高度な前臨床及び臨床開発に進んでいる。
- 数十の新しい必須薬物の標的が特定され、調査されている。
- 新薬の 1 つであるプレトマニドは、他の治療に耐えきれない、または他の治療で効果が見られない多剤耐性結核及び超多剤耐性結核の治療において、ペダキリン及びリネゾリドとの併用が、米国 FDA によって承認された。
- 第 II 相試験の有望な結果として、リファペンチンとイソニアジドによる 1 か月の治療が、HIV 感染者の結核感染に対するイソニアジドによる 9 か月間の治療と比べて劣っていないことを示した。

新しい診断
• 2020 年までに、最大 18 の診断製品が、WHO による審査を受けられる段階にまで来ることが見込まれている。
• 2019 年に初めて、WHO は Essential In Vitro Diagnostics のモデルリストを公開した。この画期的な開発は、UHC を推進するために、医薬品の使用と診断テストに関連付けることの重要性を示している。
• 診断精度評価研究によれば、Fujifilm SILVAMP TB LAM は有望だ。この検査は、HIV の状態に関係なく一般の人々に広く使用でき、子どもたちに対しても使用できる次世代 TB LAM 検査方法の 1 つである。
• この分野の研究は進化しており、LAM はすべての結核患者で検出可能であるという認識が高まり、すべての患者に真の臨床現場 (POC) 診断ができる可能性を秘めている。
• インドの企業 Molbio Diagnostics は、核酸増幅技術（NAAT）を使用して結核を特定し、最も一般的に使用されている結核薬であるリファンビシンに対する耐性を検出する TruenatTM と呼ばれる機械を開発した。カートリッジベース (CB) NAAT はインドで広く使用されており、結果が出るまでの時間を数ヶ月から数時間に短縮することで結核診断を変革し、患者が遅滞なく治療を開始できるようにしている。
• 次世代シーケンシング (NGS) の中には、薬剤耐性に関連する遺伝子変異を見つけるために、数百万の DNA シーケンスを並行して迅速に処理し、人やバクテリアのゲノムを解読できるシーケンス技術があり、薬剤耐性プロファイルを効果的に特定して、薬剤耐性結核の正確な診断と管理を行うことができる。過去 3 年間で、次世代シーケンシング (NGS) が、結核の薬剤耐性のモニタリングに使用され、2018 年に WHO は薬剤耐性結核検出のための NGS 技術の使用に関する技術指針を公開した。152

ボックス 6.3: M72 ワクチン試験はワクチン研究を前進させる
現在、結核感染症において、成人に使用するために承認された結核ワクチンはない。しかし、第 IIb 相臨床試験では、M72 / AS01E ワクチン（より一般的には M72 として知られている）が、結核菌にすでに感染している成人 3,573 人の 50％を安全に保護した。この場合、保護とは、結核に感染した成人に対してワクチンが結核症を発症させないようにすることを意味し、その観察によれば、このレベルの保護を提供するワクチンは、数千万の新しい結核症例を回避し、数百万の死を防ぐ可能性があることが示唆されている。潜在的なインパクトをより正確に定義するためには、さらに評価が必要になる。治験の結果は、結核感染を制御し、人々が結核症を発症を防ぐ体の能力を改善する新しいワクチンを開発することが可能であることを示した。153結核感染と共に生きる人々の数が非常に多いことを考えると、

そのようなワクチンは 幅広い公衆衛生上の利点を提供し、結核予防に変革をもたらす。

M72 第 IIb 相臨床試験は、HIV 陰性の成人を対象にケニア、南アフリカ、ザンビアで実施された。この研究は Aeras / IAVI が共同で、グラクソ・スミスクライン（GSK）、Bill & Melinda Gates Foundation、英国の国際開発省（DFID）、オランダ国際協力局及びオーストラリア国際開発庁からの資金提供を受けて実施した。M72 ワクチンを、さらなる研究とテストを通じてライセンス供与と導入に向けて前進させるためには、追加投資が必要になる。

M72 第 IIb 相試験の結果は、結核を予防するための新しくより効果的なワクチンの開発における分岐点を示している。そして、このワクチン候補の後期段階治験の評価が支援されなければならない。

しかし、結核の流行を終わらせるためには他の複数のワクチンが必要になるだろう。

ワクチンによる防御の程度は、年齢、集団（例えば、重複感染の有無とか、宿主遺伝形質の違いとか）及び感染の段階によって異なる可能性が高いためである。我々はワクチンの有効性を改善し続け、代替の投与経路を模索し続けてなければならない。したがって、臨床における新たな候補物質の開発、強力な前臨床バイオライン及びワクチン開発への革新的な手法に関する初期段階の研究に対して投資を続けることが不可欠である。

ボックス 6.4: 結核の研究開発のための WHO 世界戦略

世界計画の改定が報道された時、WHO は第 71 回世界保健総会の結核研究開発のための新しい世界戦略を策定するという誓約を順守する過程にあった。

この戦略は、エビデンスに基づく一連の推奨事項と併せて包括的な指針となることを目的としている。その主な目的は、すべての国連加盟国に結核の研究と革新の障壁を取ることを目的とした具体的なフレームワークを提供することである。本戦略が対象とするのは、主に保健、科学、技術、財務、教育の省庁である。結核を終息させるために迅速な取り組みを実施するという精神のもと、この戦略はまた、統一され整合した対応について述べている。この過程において技術革新を加速するために必要な投資とパートナーシップを、関連する国内及び国際的なパートナーと結核の影響を受けたコミュニティが引き受ける。

この戦略には 4 つの目的がある。
1. 結核の研究と技術革新を可能にする環境を作り出す。
2. 結核の研究と技術革新への投資を増やす。

3. データ共有への取り組みを促進及び改善する。  
4. 研究と技術革新のならびに公正なアクセスを確保する。

この世界計画の改定は結核研究開発の新しい世界戦略を補完するものである。また、利用可能な資金で開始できる研究プロジェクトを含む結核研究開発の優先分野を特定する枠組みを示し、そして各国が現在の13億ドルの研究開発資金ギャップを埋めるための枠組みを提供する。

第3項 優先すべき、すぐに開始できる（off the shelf）プロジェクト

ストップ結核パートナーシップの、新しい結核ワクチン、新しい結核診断法及び新しい結核薬に関するワーキンググループ（まとめて、新しいツールワーキンググループ）は、研究資金提供者が支援できる以下のすぐに開始できる（off the shelf）プロジェクトを特定した。これらのプロジェクトは、結核の研究開発の進捗状況を改善し、そして迅速に立ち上げができるため注目されている。

図 6.1：すぐに開始できる（off the shelf）プロジェクト：診断

手頃で拡張性がありかつ迅速な結核薬感受性試験（DST）のための分散型次世代シーケンシング（NGS）

根拠：この次世代シーケンシング（NGS）は、数百万のDNAシーケンスを並行して迅速に処理し、人や菌のゲノムを解読し、薬剤性に関連する遺伝子変異を見つけることができるシーケンス技術であり、薬剤耐性結核の正確な診断と管理のための薬剤耐性プロファイルを効果的に特定することができる。この技術は、がん分野の治療において、すでに十分に確立されている。

プロジェクト：
分散型NGSを基礎としたソリューションを導入し、NGSワークフローを（高次機関への照会なしに）患者に近い場所で行う。これには、検証と臨床評価とともに、分散型製品・プラットフォームまたはワークフローの開発後期段階が含まれる。

研究者：学界と産業界を統合するチームを基本とした手法。

概算費用：2,500万米ドル

結核感染から活動性結核への進行を予測する検査（初期結核の診断）

根拠：結核の進行に関する理想的な検査とは、それにより、感染から活動性結核までのさまざまな段階の区別が可能となり、もしくは検査によって、初期結核（活動性結核の臨床症状が現れる前の、病理が進行している、初期の長く続く無症状の時期をこのように呼ぶ）の有無を検出できるようなものである。現在の市販の診断検査（ツベクリン皮膚反応検査及びIFN-γ遊離試験）は、記憶免疫応答を検査して行うため、結核感染者が活動性結核に進行するかどうかを予測する能力が不十分である。
プロジェクト: 初期の結核に関する検査スコアを用いて治験参加者を層別化し、リスクのある集団に対して大規模な臨床試験を実施する。WHOが定めている目標とする製品性能（TPP）と一致する検査を利用する。

研究者: 臨床試験の専門家
概算費用: 4,000万米ドル

バイオマーカーに基づく試験

根拠: 肺結核を検出するための塗抹顕微鏡検査に代わり、治療現場で行うことができる、喀痰を用いない感度の高い検査。実行が簡単で限られた操作で利用可能である。

プロジェクト: 次世代のバイオマーカーに基づくテストを開発し、HIVの有無に関係なく、子どもを含む一般の人々に対して広く使用する。

研究者: 製品開発者、学界、臨床試験の専門家。
概算費用: 1,000万米ドル

図 6.2: すぐに開始できる（off the shelf）プロジェクト：治療薬

新しい結核薬導入のためのモニタリングと薬剤安全性モニタリング

根拠: 患者を適切に治療し、新しい結核薬に対する耐性の出現を検出できること及び標準化された実験室及び薬剤感受性試験の臨床現場において、本格的なアプローチの実施を保証する。これらは、臨床試験を適切に設計し、国レベルで監視システムを構築するために重要である。

プロジェクト: 寒天培地や液体ベースの試験法を用いた分型、または薬物の有効な血漿濃度を迅速に評価し、耐性の多い国々での耐性モニタリングのためのデータを開発するための研究を支援する。

研究者: スポンサー企業または非営利製品開発パートナーシップ（PDP）の専門家が診断の専門家及び病院ベースの研究所と協力して、単一の薬物及び薬物の組み合わせの薬剤感受性試験（DST）データを作成する。

概算費用: 5,000万米ドル

新しい治療方式の開発における最適な相乗効果を決定するための新しい薬剤の組み合わせの前臨床試験

根拠: 新しい候補化合物の数が増えるにつれて、治療方式開発のための最適な投与量と組み合わせを特定するには、ヒトでの評価の前に前臨床試験での有効性を注意深く評価する必要がある。

プロジェクト: 医薬品開発者間の協力体制を構築し、情報を共有し、過去の試験データに基づいて実験室の評価を整理して、各組み合わせの効果を比較する。

研究者: 規制当局と協力して有用な組み合わせを定義するために、試験管及び感染の動物モデルに関する薬物試験の専門知識を持つ科学者のコンソーシアム。

概算費用: 6,000万米ドル
### 薬剤感受性結核と薬剤耐性結核の両方で治療期間を短縮する新しい治療方式の評価

**根拠**：治療期間の短い新しい治療方式の第Ⅱ/Ⅲ相試験を体系的に実施するために、世界中の臨床試験サイトの調整されたネットワークを確立する必要がある。これにより、有望な併用療法を繰り返しの作業なしに体系的に行うことができる。

**プロジェクト**：世界中に治験実施場所を持ち、治療の新しい方法をテストするために協調して働いている臨床研究者ネットワーク。

**研究者**：医師、衛生胸部者、統計学者、データセンター、病院の研究所及び新薬を進歩させるために協力的なフレームワークで働いている規制当局。

**概算費用**：2億米ドル

---

### 図 6.3：すぐに開始できる（off the shelf）プロジェクト：ワクチン

#### 結核菌感染の完全なスペクトルを反映する前臨床研究モデルの開発と改良

**根拠**：潜在的なワクチン候補の前臨床評価における動物モデルの使用は、ヒトの臨床試験に入る前に、ワクチン候補がヒトに有効かどうかを判断するための必要かつ重要な段階である。しかし、結核で最も一般的に使用される動物モデルは、一方に感染した動物をシミュレートするのに、人間の感染の他の多くの側面をモデル化することは難しい。前臨床及び初期段階のワクチン開発をサポート及び加速し、最も有望な候補をヒト試験に進めるには、結核菌感染とヒトの疾患への進行をよりよく反映する、目的に適合すると考えられる動物モデルが必要である。

**プロジェクト**：人間のワクチン効果をよりよく予測する動物モデル開発、新規ワクチンの評価と防御の相関の識別の両方を可能にするために必要なツールを開発する。

**研究者**：さまざまな能力やスキルを統合する能力を持つ調査員による複数のチームで実施。

**概算費用**：1億米ドル

---

### 結核ワクチンの有効性評価のための制御されたヒトチャレンジモデルの開発

**根拠**：制御されたヒトチャレンジモデルでは、弱毒化した病原菌株を意図的に健康な成人の志願者に感染させワクチンの防御能力を評価する。これは、マラリア、RSウイルス、インフルエンザなど他の主要な感染症のワクチン開発を加速する上で極めて重要である。長期にわたる高価で大規模な臨床試験を開始する前に、ワクチンの防御能力の早期の小規模なヒト試験を可能にするため、制御されたヒトチャレンジモデルは、代理ワクチンの有効性評価のための倫理上の考慮を考慮した感染チャレンジの条件を確立するために有益なツールである。

**プロジェクト**：制御されたヒトチャレンジ試験用のツールを開発する。これには安全な抗酸菌レポター株の作成、ヒトワクチン研究のための感染チャレンジや、菌の増殖/生残の追跡・計量のための実験医学プロトコルなどが含まれる。

**研究者**：ワクチン学者、臨床結核専門家、分子細菌学及びヒト免疫学を含む学際的なチームでの取組み。

**概算費用**：4,000万米ドル

138
後期の結核ワクチン開発に備えた疫学的枠組みの策定

<table>
<thead>
<tr>
<th>項目</th>
<th>進行のリスクと金結核を予防、基礎科学研究の中で進し、結核の研究開発パイプラインを確立する。</th>
</tr>
</thead>
<tbody>
<tr>
<td>プロジェクト</td>
<td>東南アジア、東ヨーロッパ、南アメリカ、サハラ以南アフリカの最大40の臨床現場で結核とHIV感染の横断的発生率と有病率の調査を実施し、結核ワクチンの有効性試験の設計と実施の能力を確保する。</td>
</tr>
<tr>
<td>研究者</td>
<td>疫学の専門知識と国レベルのサポートを備えた調査員のコンソーシアムであり、ワクチン試験のスポンサーと臨床業務スタッフと協力して活動する。</td>
</tr>
<tr>
<td>概算費用</td>
<td>2,500万米ドル</td>
</tr>
</tbody>
</table>

第4項 基礎科学研究

結核菌（M. tuberculosis：MTB）は結核を引き起こす病原体である。しかし結核菌がヒト感染を引き起こすメカニズムはまだ完全には解明されていない。新しい結核診断薬、治療薬、ワクチンを見つけるための最も有望な手法を理解するために、研究者は、結核菌（TB bacillus）が生体とどのように相互作用するか、そして体が防御免疫反応をどのように起こすかについて理解を深めることにより大きな利益を得るだろう。

基礎科学研究の中でも急を要するものは、結核感染から結核症の発症に至る過程、結核症進行のリスクと段階に関するバイオマーカーを用いた予測及び結核治癒を確実かつ容易に知る方法である。結核に関する基礎科学を発展させるためには、バイオレポジトリ（物理的な保管施設）を含む新しいインフラ及び科学的研究所に使用される標本を収集、処理、配布する方法を発見するための支援が必要である。世界計画は、結核の基礎科学研究を推進し、結核の研究開発バイオライツを確立させるためには、必要な年間20億ドル超の金額に加えて、毎年4億ドルが必要になると推定している。通常、基礎科学研究は学術機関、産業界、官民パートナーシップによって実施されており、その多くは、公的資金に依存している。基礎科学に向けられた資金は技術革新を促進し、結核に関する知識を高め、結核を予防、診断、治療するための新しいツールを開発する能力を高める。十分な研究資金は、新世代の科学者を結核研究の分野に引き付けて維持するという、更なる利益を得られる。

155 A biomarker is a measurable substance inside the body that reliably indicates the presence of TB infection and/or TB disease. LAM, discussed earlier in the chapter, is an example of a TB biomarker.
してくれる。
第5項　小児医学及び結核リスク集団

小児結核の流行を終わらせるためには、子どもたちに関する特定のニーズを満たすための研究課題を進めることが重要になる。小児結核に関する研究は、小児結核を診断、治療、予防するために既存のツールをいかに適用するかに焦点を当てている。しかし、子どもは大人とは異なるニーズを持っている。たとえば、子どもにとって痰を吐き出すことは難しいため、痰を用いる迅速診断テスト Xpert MTB / RIF を子どもに対して使うことは適当ではない。ストップ結核パートナーシップの児童及び青年結核ワーキンググループと治療行動グループは、小児結核に関する研究の優先順位について詳細なリストを示した。予防に優先投資は以下を含む。

予防：より短時間、且つより簡単な新しい予防治療方式を見つける。現在の BCG ワクチンを改良し、乳児、子ども、青年向けの新しいワクチンを開発する。

診断：診療現場で使用できる非侵襲性の新しい試験を開発する。

治療：子どもと青年に対する新しい結核薬の安全性と有効性を評価して最適な投与量を決定する。現在利用可能なものよりも、もっと短くて簡単な治療方式を特定する。子どもに優しい処方による治療方式が利用できるようにする。

乳児、子ども、青年に影響を与える結核の基本的な特徴を理解するためには、感染に対する免疫反応や、新しいツールの開発につながる関連バイオマーカーを含む、信頼できる測定方法の考案により、体内で発生する免疫反応を用いて結核感染と活動性結核を明らかにする追加の研究が必要になる。

新しいツールの研究開発において、HIV 感染者、妊娠中の女性、高齢者、糖尿病のリスクのある人々、免疫不全の人々、医療従事者、鉱山労働者、家族の接触者、囚人、その他のリスクのある人々を結核リスク集団として含めることも重要である。結核リスク集団については、第 3 章で詳しく述べている。

第4節 研究を可能にする環境づくり

第1項 研究機関・パートナーシップ・協働拡大に向けて

結核の技術革新を進めるために研究機関を支援することが重要である。以下は、新しい結核ツールの研究開発を加速するための鍵となる機関とイニシアチブの例である。各々はマルチセクターによる協働を通じて活動する。

PDPs：製品開発パートナーシップ（PDP）は、新しい結核ツールの研究開発を進める上で重要である。官民パートナーシップの一種であるPDPは、民間のメーカー、政府、NGO、学界とのコラボレーションを通じて活動する非営利組織であり、通常、新しいツールを開発して商品化するための資源と技術的な専門知識を蓄えている。従来の市場インセンティブは結核の革新を進めるまでに強力ではないため、PDPは新しい結核ツールの開発にとってとりわけ重要になる。

PDPモデルを通じて機能する主要な結核研究主体には、新しい結核医薬品の研究パイプラインの最前線に焦点を当てた結核アライアンス（同盟）、革新的で新しい診断方法の開発を支援するFINDならびに新しいワクチン開発に焦点を当てたIAVI及び結核ワクチンイニシアチブ（Tuberculosis Vaccine Initiative：TBVI）が含まれる。PDPとは異なるが、クリティカルパスインスティテュート（Critical Path Institute）という官民パートナーシップは、TB PACTS、TB臨床試験データを整理分析するデータプラットフォームなどの分野において、コラボレーションを行うことで新しい医療製品の開発を加速・標準化し、必要な研究者が適宜利用できるようにし、コストの削減を図っている。

研究コンソーシアム：結核治験コンソーシアム（TB Trials Consortium；TBTC）は、米国疾病予防管理センター、他の国の公衆衛生部門及びさまざまな医療センターの研究者による共同事業体である。TBTCのパートナーは、結核感染と結核の診断、臨床管理、予防に関する臨床的、実験的、疫学的な研究を行う。

AIDS臨床試験グループ（ACTG）は、資源が限られた環境を含む世界中で臨床試験を実施している、最大の研究者によるネットワークである。ACTGパートナーにより実施された調査には、HIV感染者に対する結核ツールの使用に関する重要な研究がある。

---

BRICS結核研究ネットワーク：BRICS諸国は、結核に対するイノベーションにおいて世界の中でも重要な主体者になった。2007年から2016年にかけて、BRICS諸国からの結核研究発表の年間増加の平均は、すべての国における結核研究発表の年間増加のほぼ2倍であった。2016年には、結核研究に関するすべての出版物の31％は、BRICS諸国を筆頭著者によるものであった。この新しいライセンスは、ブラジル、ロシア連邦、インド、中国、南アフリカにおける結核研究開発の基盤をさらに発展させ、結核治療と予防における既存と新規介入方法双方の最適な使用を促進するために設立された。この国際的な協力体制は、インドの結核研究コンソーシアム、ブラジルの結核研究戦略、南アフリカの戦略的健康イノベーションパートナーシップが実施している新しい結核活動など、新しい結核研究の取り組みに基づいている。世界の結核による死亡の38％はBRICSの5か国で発生している。BRICS結核研究ネットワークは、新しい結核ツールの発見と普及において、個別はもちろんのこと、国際的な協力関係の面からも、ますます重要な役割を期待されている。

医薬品特許プール（MPP）：MPPは、国連により支援された公衆衛生のための組織である。HIV、HCV、結核の医薬品およびその他の特許を受けた必須医薬品を対象とした、公衆衛生を指向した認可を通じて、安価で品質が保証された医薬品へのアクセスを減少国（LMIC）において改善するために設立された。MPPは、既存及び新規の結核薬の公衆衛生認可に関して可能性を秘めた手段である。有効な特許及び申請中の特許を対象とする、この新しいライセンスは、非独占的、サプライセンス可能、世界中で使用料が不要であり、前臨床及び臨床（第Ⅰ相及び第Ⅱa相）の研究データ及び結果へのアクセスを可能にする。

ライフ賞：ライフ賞は共同研究開発の1つのコンセプトである。結核と技術革新において、新しい結核治療オプションの導入を促進するために設立された。ライフ賞の最終的な目的は、薬剤耐性結核を含むすべての形態の結核を1か月以内に治療できる新しい治療方法を特定することである。ライフ賞は、民間のメーカー及び他の研究機関からの有効な分子の認可、ならびにプールされたそれら分子を、研究機関が治療の組み合わせにおいてテストできるようにする。ライフ賞はまた、3種類の資金調達方法と経済的インセンティブを提供することにより、結核研究開発への投資に報いる、新しい方法を創出することを見込んでいます。

・事前に定義された基準を満たす新薬の候補について、臨床試験を始める研究機関に対して賞金を提供

・あらゆる形態の結核を治療する可能性を持った、新しい治療法の臨床試験に対して助成金を提供

・開かれた共同研究を可能にするための、知的財産及び臨床データの公正なライセンシングに対する資金提供

ライフ賞は、研究機関、従来の研究開発において、直面するリスクと実質的なコストの削減を想定している。アクセスを促進するために、コンセプトモデルは、研究開発への投資コストを薬品の販売価格と量から分離して、公平で安価なアクセスを提供する。国連による「結核との闘いに関する政治宣言」の中、国連加盟国は、結核の研究協力を強化するための研究プラットフォームとしてライフ賞に言及した。

第2項　臨床試験を実施するための現場の能力向上

低所得・中所得国（LMIC）で結核を終息させるための最も有望な新しいツールとなるためには、それらの環境でツールがうまく機能することが証明されなければならない。それには、最も広く使用されている環境で新しいツールをテストする必要がある。ただし、課題は、特に新しいワクチン・治療薬・診断薬が大規模な後期の試験に入ることに、必要な数の臨床試験の数を実施する能力が、LMICで限られたであることである。

その要因としては、経済的及び人的キャパシティの欠如、倫理的及び規制システムの障壁、物理的な研究基盤を含む研究環境の不備、運用上の障壁、競合の問題などがある。159

これらの課題に取り組むために、研究資金提供者たちはLMICの地元の研究者主導による研究を促進すべきであり、LMICの各国政府も国内研究能力の強化に投資しなければならない。LMICにおいて、臨床試験を実施するための新しいシステムを支援及び構築するためには、より強力な国際協力が必要である。160 HIV / AIDS、結核、マラリア及びその他の貧困が起因となる感染症を予防・治療するための新しいまたは改善された介入に関する臨床開発を加速するために、ヨーロッパと発展途上国の臨床試験パートナーシップ（EDCTP）は、製薬業界や政府を同じくする組織と連携して、ヨーロッパとアフリカの機関や研究者間のパートナーシップを支援している。抗結核薬の治験のための適正な参加型実践ガイドライン（Good Participatory Practice Guidelines for TB Drug Trials）及び結核ワクチン研究のための適正な参加型ガイドライン 2017（Good Participatory Practice Guidelines for TB


144
Vaccine Research 2017）に示されているように、臨床試験が実施されるコミュニティは、同試験の全ての段階で関与する必要がある。161, 162

第3項 効率的で予測可能な規制及び政策の確保

新しいツールへのアクセスに関して頻繁に発生する障がいとして挙げられるのが、国の登録プロセス段階における透明性の欠如である。医薬品の場合、たとえば、登録プロセスに関して、医薬品のスポンサーとなってくれる団体への申請者、規制当局及びコミュニティの間での相互作用や議論の場がないことがしばしばある。規制に関する調和の欠如は、新しいツールに対して、もたまたした国ごとに行う承認手続きという結果となり、致命的な遅延を発生させている。

各国政府は、他の国ですでにテストされている新しいツールを評価するキャパシティを構築して、安全で効果的であることが示されているツールを輸入して使用できるようにする必要がある。WHOが発出した指針は、特に迅速な規制プロセスがない国において、国の政策策定と適用を支援し、促進することができる。他に考えられる解決策の1つは、臨床開発から薬事申請、地域承認までの薬事プロセスを合理化、調和させることによって、結核の研究を促進することである。

第4項 才能溢れる結核研究者への支援

結核の研究開発において長期的な成功を確かなものにするためには、インセンティブを与え、基礎科学研究からトランスレーショナルリサーチ、そして、臨床試験に至る結核イノベーションに対する取り組みを強固なものにできるよう、研究者のキャパシティ向上を図ることで、結核研究の分野自体を育む必要があります。特に、結核高負担国での研究を支援し増やすために、具体的な努力がなされるべきである。The UNESCO eAtlas of Research and Experimental Development（http://on.unesco.org/RD-map）では、国ごとの研究者の総数を視覚化し、高所得国、中所得国、低所得国の研究者数の格差を示している。

次世代の若手研究者のトレーニングは、最優先事項である。これまで、このニーズはウェルカムトラストによる奨学金制度、米国立衛生研究所（NIH）による博士号取得前または以降の支援、EU の資金提供などのメカニズムによって満たされてきたが、UNESCO の

https://www.cptrinitiative.org/downloads/resources/GPP-TB%20Oct1%202012%20FINAL.pdf
eAtlasから明らかように、これらの取り組みのみではこの空白を埋めることはできない。政府と非政府の両方の資金提供者は、この必要性を認識し、次世代の研究者を育成及び維持するための支援を提供する必要がある。同支援には、積極的なキャリアサポートとキャリア開発活動ならびにローカル、地域、グローバルな研究フォーラムにおけるネットワーク構築と研究発表のための明確な機会提供が含まれる。

TDR（UNICEF、UNDP、世界銀行、WHOによる共同の取り組み）のようなパートナーシップは、低所得・中所得国（LMIC）において結核ケアを改善するために、システムのレベルで取り組んでいる結核研究者へのトレーニングを支援するためのモデルを提供する。TDRは、The Union及び国境なき医師団（MSF）と共同で主導する、オペレーションリサーチに関する世界的なパートナーシップであるStructured Operational Research and Training Initiative（SORT IT）を通じた支援も実施しており、研究者へ、自国の優先課題に関するオペレーションリサーチを実施し、持続可能なオペレーションリサーチ能力を構築し、結核プログラムのパフォーマンスを向上させるための証拠に基づいた決定を行うように訓練をしている。163

参加者は、教室で作業を行い、倫理審査のための研究プロトコルと申請書を書き、データ管理と分析のトレーニングを受け、データ分析計画を設計し、論文を書いて査読付きジャーナルに投稿し、必要によっては、政策立案者やその他のステークホルダーに向けて政策概要やプレゼンテーションを行う。164

USAIDがサポートする別のプロジェクトADVANCEは、複数のパートナーによる研究イニシアチブであり、HIVワクチンの研究開発のすべての段階においてアフリカ及びインドの研究者の関与を高めている。165

第5項 新しいツールへの投資

結核臨床試験の資金に関するニーズ

公的研究機関と商業（民間）の開発者双方による結核研究開発への投資が少なすぎる。このことが、結核を終息させるために必要な新しいツールの開発を遅らせている。結核に関

する国連総会ハイレベル会合政治宣言において、国連加盟国は結核の研究と革新のために必要とされる持続可能な資金が不足していることを認めた。そして、彼らは「結核研究のための年間資金調達の推定 13 億米ドルのギャップを埋めるために、世界全体の投資を 20 億米ドルに増やす目的で、十分かつ持続可能な資金を動員する」ことを約束した。

表 6.4 は、2016 年と 2017 年の資金ギャップに基づいた追加調整額を含む、2018 年から 2022 年までの新しい結核治療薬、診断薬、ワクチンの研究開発に必要な年間資金のニーズを示していた。2018〜2022 年に必要と予想される総資金は、新薬開発に 68 億米ドル、新しい診断に 9 億 1,600 万米ドル、新しいワクチンに 31 億米ドルであり、5 年間で総額 108 億米ドル、もしくは年間総額が 21 億 6,000 万米ドルとなる。これらには、新しいツールを展開するために必要な資金は含まれておらず、新しいツールをさまざまな国の状況において実用するために最も効果的な方法を特定するために必要となる基礎科学研究またはオペラショナルリサーチに関する資金も含まれていない。

表 6.5: 結核の研究開発に対する年別資金ニーズ（単位：100 万米ドル）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>治療薬</td>
<td>5,710</td>
<td>1,142</td>
<td>1,090</td>
</tr>
<tr>
<td>診断法</td>
<td>806</td>
<td>161</td>
<td>110</td>
</tr>
<tr>
<td>ワクチン</td>
<td>2,763</td>
<td>553</td>
<td>304</td>
</tr>
<tr>
<td>合計</td>
<td>9,279</td>
<td>1,856</td>
<td>1,504</td>
</tr>
</tbody>
</table>

年間の資金ニーズ：2,157

*水準展開の資金を含まない。

結核の研究開発資金のギャップを埋めるための「公正な配分」のフレームワーク

最大の投資能力を持つ国々と新しい結核ツールから最大の利益を得る国々が、それぞれ国内の研究開発への総支出（Gross domestic expenditure on R&D: GERD）のうち、ごく一部を結核のために割くことができれば、結核の研究開発資金に関するギャップはすぐに埋められるかもしれない。2017 年には、結核に対して 10 万米ドル以上の研究開発資金を報告している 32 か国のうち、南アフリカ、ニュージーランド、フィリピンの 3 か国のみが、GERD

---


167 A fuller treatment of recent TB R&D funding trends, including analysis of funding for basic research, operational research, and paediatric TB research, is found in the annual Tuberculosis research funding trends reports produced by Treatment Action Group and the Stop TB Partnership.
全体の 0.1%という、結核の研究開発資金に関する公正な配分を満たした。168 もし、G20 を構成する国、高い結核負担（WHO 分類）を負っている国及び他のグループのいずれにも含まれない、世界で最も裕福な国々を含めた 62 か国が、各々 GERD のうち少なくとも 0.1% を結核の研究開発に費やさなければ、結核研究開発のための年間の資金不足を埋めることができるとだろう。169 これらのいわゆる公正な配分の資金目標は、各国が結核の研究開発に投資すべき最低限のものと見なされている。GERD フレームワークは、「すべての国が研究開発に適切に貢献することを保証する」ことで、結核研究開発資金のギャップを埋めるという国連の結核に関する政治宣言を満たすための 1 つの提案である。

革新的な資金調達手法

国連加盟国は、その宣言に沿って、革新的な資金調達メカニズムを新しい資源を動員する手段の 1 つとして採用することによって、結核の研究と革新のために十分で持続可能な資金を動員する必要がある。現在利用可能な資金は少数の国と資金提供機関に大きく依存しているため、結核の研究開発について資金調達基盤を多様化するためには、新しく革新的な資金調達方法を開発することが重要である。170

2017 年に、UNITAID（ユニットエイド）は結核研究開発の資金援助者として、多国間組織では世界第 3 位、全体では第 5 位となった。171 ユニットエイドは開発の後期段階に資金を提供し、市場の障壁に対処しながら新しいツールの導入を加速する。ユニットエイドの主な資金源は、革新的な資金調達メカニズム、つまり 10 か国172 において購入された航空券への少額の課税である。国連加盟国はまた、ライフ賞を結核の研究開発のための有望な革新的資金調達の概念として認識している。

ストップ結核パートナーシップの Accelerator for Impact (a4i) は、人間中心の、結核と世界の健康のための次世代のイノベーションを支援する、公共部門との共同によるファイナンスインパクト投資ファンドである。

Accelerator for Impact (a4i) は、以下に焦点を当てる：
1. 人々がアクセスでき、質の高い手頃な価格の医療を受けやすいように、ケアモデルがよりデジタル化され、仮想化され、オンデマンドになるように旋回軸を付ける。

171 Ibid
172 Cameroon, Chile, Congo, France, Guinea, Madagascar, Mali, Mauritius, Niger, Republic of Korea.
2. 結核と国際保健の技術革新に関する急速な展開を促進する。
3. 公共セクターと民間セクターの両方の投資家からの新しい資金と資本を開放させる。

革新的資金調達メカニズムは、結核の研究開発を推進するための未開発の大きな可能性を秘めており、今こそ、政府・多国間機関・慈善・企業・金融セクターが一致団結する時である。

第6項 不作為のコスト：研究開発資金の不足がもたらすものは？

新しいツールへの先行投資の重要性を概念化する 1 つの方法は、不作為のコストを推計することである。言い換えれば、世界が結核研究開発の資金ギャップを埋めることができなかった場合、どのような悪影響が生じるのであろうか。

控え目に仮定（下記参照）したとしても、不作為のコストは非常に大きくなる（図 6.3）。新しいツールの研究開発に対する投資が 5 年間遅延した場合、2030 年までに以下のような問題をもたらすとされる。

1. 1,390 万人が結核を発病する。
2. 追加で 200 万人が結核により死亡する。
3. 結核の結果として 4,980 万 DALY（割引計算なしで 7,510 万）が影響を受ける。
4. 結核治療のみで 142 億米ドル（割引計算なしで 216 億米ドル）の追加費用が発生する。
5. 1,720 億米ドル（割引計算なしで 2,550 億米ドル）の生産性が失われる。

173 This inaction is defined as the cost of future TB treatment and lost productivity that would accrue if the world achieved the 2020 milestones of the End TB Strategy by 2022, but failed to make the necessary investments in new tools between 2020 and 2025.

174 Each disability-adjusted life year (DALY) is valued at per-capita GNI in this scenario.
図 6.4：新しいツールを使用した場合と使用しなかった場合における結核発症数の予測

結核の研究開発に対する不作為の総コストは、1,850 億米ドルを超えると推定される。これには追加の治療コストと生産性の損失が含まれる。これからのコストは、2030 年以降さらに増加すると予想されている。2020 年以降の投資の 1 年の遅延でさえ、莫大なコストを生むことになる。すなわち過剰に結核に罹患する 480 万人以上の人々、過剰の結核死亡 67 万人、過剰の結核治療費 51 億米ドル（割引計算なしの場合 75 億米ドル）、1,730 万の過剰 DALY（割引計算なしの場合 2,520 万 DALY）、過剰に 600 億米ドル（割引なしで 870 億米ドル）の生産性損失が発生する。

不作為のコストは以下の仮定に基づいて算出された。
1. 2020年の中間目標に到達するための結核発生率と死亡率に関する年間低下率は 2022 年までに達成され、新しいツールがない場合、2030 年まで同率の低下を続ける。
2. 新しいツールへの追加投資から 5 年後（2020 年）に、発生率と死亡率の低下は着実なものになり、2030 年の中間目標を達成するのに十分な程度になる。したがって、新しいツールのインパクトは、時間の経過とともに徐々に実現し、2025 年におけるインパクトよりも 2030 年の方が大きくなる。
3. 結核治療の費用は、2018 年の水準を超えて増加しない。
4. 5％の年間割引率がすべてのコストと DALY に適用され、それによってコストと生産性の将来価値が減少する。割引計算前のコストと結果も示す。
5. 結核による健康ユーティリティの損失は、結核死亡率に比例すると想定した。世界の疾
病負担研究2017によって推定された比率を用いて、結核死亡あたり35年の生命ロス（YLL）、結核事例あたり0.35年の障がいのある人生（YLD）増加を仮定し標準化された変換を実施した。175

第7項 新しい結核ツールの提唱

結核の技術革新を加速させるには、より強力で協調的なアドボカシーが必要になる。結核研究者、市民社会、結核体験者コミュニティ及び回復者を含むアドボカシー団体は、結核研究と革新のための世界計画とWHO世界戦略を使用して、13億米ドルの結核研究開発資金のギャップを埋めるために必要な、より多くの資源とより良い政策を発言するために共に参加し、新しいツール開発を可能にする環境を創造し、結核の研究と革新の恩恵への公平なアクセスを確保ることができる。

アドボカシーは、本質的なリスクの高い研究により深く関与し、負担の大きい国での流行を終わらせるための最大の可能性を秘めた取り組みに向けて資源を導き、患者及び結核体験者コミュニティのニーズを満たし、新しいツールが広く使用されるようになるための明確で信頼できる道筋をつけるために、政府に対して根拠に基づいた主張を行うために、鍵となる活動である。政府省庁、及び国会は、アドボカシーに関する最も重要、且つ主要な活動対象である。これらを関与させるために設置された結核研究アドボカシー連合を活性化させるには、以下の行動が役立つ。

結核体験者コミュニティとアドボカシー実施者が主体の研究リテラシーを強化する。

次世代の研究者を育成することが重要であるように、研究コミュニティと協力して研究開発資金を動員し、結核対策のイノベーションを可能にする環境の構築を支援できる研究アドボカシー実施者を育成することも重要である。この一環として、結核回復者と体験者コミュニティ、そして国際保健アドボカシー団体が主体となった研究リテラシーを構築することが重要である。

新しい結核治療ツールのアドボカシーを強化するには、結核研究とアドボカシーを実施するコミュニティ間において、より定期的に知識共有を行い、密な調整をする必要がある。研究リテラシートレーニングの機会と資料の提供により、市民社会と結核体験者コミュニティは、研究プロセス全体を通じた情報を得て、教育を受け、それを基に活動する必要がある。新しい調査研究を定期的にアドボカシー実施者に共有して調査結果と推奨事項をアドボカシーのメッセージへと変換するための協力をしてもらい、重要な研究を意思決定者

やニュースメディアに共有する必要がある。アドボカシーへの資金提供者は、結核研究者の戦略的コミュニケーションを支援するための追加の助成金を検討する必要がある。

アドボカシーにおける研究コミュニティの役割を強化する。
科学者は、新しい研究結果についてだけでなく、結核への革新において直面する障壁や機会についても説得力をもって話すことができる。研究資金と研究を可能にする環境を作るために必要な政策変更を提唱するために、実践コミュニティ内の科学者たちは、たとえば、ストップ結核パートナーシップの新しい社会活動グループや The Union の会員等のフォーラムを利用して、より積極的に協力しなければならない。アドボカシーに詳しい結核研究者をより多く擁するアドボカシー団体は、キャンペーンや政策立案者への働きかけに研究者が参加する機会を増やすことができる。

結核の回復者をアドボカシーのパートナーとして関与させる。
コミュニティ主導のアドボカシーは、科学研究への投資と新しいツールへのアクセスを向上させるために重要な方法となっている。それは、特に最も脆弱で、サービスが不足でありリスクのある人々のために、結核対策における人権の向上にとって重要な方法となっている。

コミュニティにおけるアドボカシー実施者は研究に決定的な役割を果たす。彼らは健康の社会的決定要因と効果的な結核対応との相互関係を記録、追跡して分析するうえで特別の位置にいる。その関与は増加傾向にあり、これは自己決定と結核対策への有意義な参加に対するコミュニティの要求からもたらされる。

コミュニティのアドボカシーに関する研究への関与の 1 つのモデルとして、コミュニティに根ざした参加型研究（CBPR）によるものがある。このモデルは、研究における共同的で公平なコミュニティの関与及び研究の問題、プロセス、製品の共有所有権の原則に基づいている。

グローバルコミュニティネットワーク（例：結核活動家の世界連合、TBpeople）及び地域コミュニティネットワーク（例：ACT Asia-Pacific！、ACT！、DRAF TB、TBEC、We Are TB）の規模は、2016 年以降 2 倍になった。彼らによるアドボカシーは、結核に関する国連政治宣言の目標や誓約を達成する上で役に立つ。この誓約には、研究開発のために十分で持続可能な資金を動員することにより、安全・効果的・公平・入手可能な新しいワクチン、臨床現場（POC）、子どもに優しい診断法、薬剤感受性試験（DST）、あらゆる種類の結核疾患と感染症に対する成人・青年・子どものための安全・短期間・多様な治療治療方
式を、可能な限り早く提供することが含まれる。TBpeople は、ストップ結核パートナーシップやマギル大学（カナダ）と提携し、すべての人の結核治療への取り組みを再考しながら、結核への革新を求めている。

国会議員を関与させる
国会議員（特に、予算編成、保健、規制、科学技術研究、ときには国防を担当する関連委員会のメンバー）は、新しい結核ツールの必要性と、自らの政府が結核に関する国連政治宣言において行った、結核研究を支援するという誓約について、よりよく教育されなければならない。世界結核議員連盟は、130 か国以上において、結核研究とアドボカシーを求めるための最初の入口を提供している。

保健省の枠を超えてアドボカシー活動を拡大する
財政、科学技術、労働委員会、規制委員会など、保健以外の省庁は、予算を確保し、研究を可能にする環境を生み出す規則や規制を定義するために不可欠で、アドボかシーを実施する人たちはこれらの関係者と定期的に関わる必要がある。

第8項 研究開発プロセス全体におけるコミュニティ関与への成功事例

新しい結核ツールへのアクセスを確保するには、結核体験者コミュニティによる意味のある関与が必要である。研究機関は、すべての研究活動、意思決定機関、フォーラム内で結核体験者コミュニティを関与させるための最善策に従うことが求められる。人間を含む健康関連研究のための国際倫理ガイドラインは、コミュニティを研究活動に参加させるための普遍的な原則を確立し、次のように助言している。

「研究者、スポンサー、保健当局及び関連機関は、今後研究に参画してもらう人々やコミュニティには、有意義な参加型プロセスに関与してもらう必要がある。そのプロセスでは、インフォームドコンセント過程の設計、開発、実装、設計及び研究モニタリングの設計、そしてその結果の普及に関して、早期から、かつ持続的に彼らに加わってもらう。」

特に結核に関連して、研究機関は、結核ワクチン研究の適正参加型ガイドライン及び抗結核薬治験の適正参加型指針を参照する必要がある。これらは、結核体験者コミュニティ

コミュニティのメンバーやステークホルダーとの効果的な関わりを研究プロセスのすべての段階で促進する上で役立つ。

コミュニティのメンバーを研究に参加させるには、結核終息戦略の実施に関するWHOの倫理ガイドラインの重要な指針も満たさなければならない。「コミュニティのメンバーは、からの治療の参加者での彼らの役割を越えて研究そのものに参加する機会が与えられるべきである。この参加は、研究の設計と実施から結果の普及まで、研究プロセスの各段階に及ぶ必要がある。」

コミュニティからの参加者は、研究が行われている地域に属していないればならない。彼らはリクルートされた研究参加者の一部であるかもしれないし、より広い社会の中で研究結果に利害関係を持っているかもしれない。地域に属している人のなかには、結核体験者のコミュニティが含まれる。すなわち、結核患者、回復者、さらに都市の貧困層、公式に記録されていない移民、HIVと共に生活している人々、薬物使用者、刑務所のコミュニティなどの結核ハイリスク集団の人々である。これらのグループは研究活動のすべての側面に優先的に関与し、彼らの能力は強化されなければならない。この関与は、人権に基づき、性別による区別がなく、人間中心のものであることを保証した上でなければならない。

コミュニティは、調査を開始する前に、調査プロセスの早い段階で協議して、調査計画を通じて通知する必要がある。コミュニティの関与は、研究者と住民との間の確立されたコミュニケーションを継続する必要がある。

結核研究における効果的な地域社会参加の確立されたモデルがいくつかある。最も一般的なモデルの1つは、研究ネットワーク及び機関によるコミュニティ諮問委員会（CAB）の設立だ。CABは、コミュニティの声、ニーズ、優先事項が、研究の設計や試験の実施から結果の普及、変更に至るまで、研究プロセスの各段階で確実に反映されるように取り組んでいる。

研究開発のあらゆる側面において、コミュニティが関与することで、結核研究開発の恩恵を政府、規制当局、資金提供者、その他の機関に効果的に伝えることができる、情報に精通したアドボカシーの新しいグループも生み出すことが出来る。結核体験者、特に結核回復者は、この分野の専門家として関与する必要がある。

---

結核体験者コミュニティは、研究の成果を監視する上で重要な役割を果たすことができ、個人の識別方法や居住地に関係なく、偏見や差別を受けずに科学の進歩の恩恵をすべての人が利用できるようにするためのサポートができる。結核体験者コミュニティは、チャンピオンとして、結核のコミュニティに根ざしたサービス提供、アドボカシー及び社会的アクウンタビリティのモニタリングに関する研究を擁護することもできる。

第5節 新しい結核ツールを水平展開し、アクセスを最適化する

新しいツールのライセンスを取得し、それを必要としている人々に届けるまでの時間を無駄にすると、結核による不要な苦痛と命の喪失が生まれる。適切な計画、戦略的で証拠に基づいたアクセスと使用の最適化によって、国は新しいツールから最大の価値と利益を得ることができる。次項では、医療システム内に新しいツールを導入する際、アクセスを拡大して最も効果的な方法を理解するために各国政府が行うべき活動を示す。

第1項 新しい結核ツールの提供のためのアクセス原則の適用

世界人権宣言と経済的、社会的及び文化的権利に関する国際規約は、科学の進歩とその応用の利益を享受するという人々の権利を支持する。これらの権利のため、新しい結核ツールのアクセスの確保を研究開発プロセスの当初から検討する必要がある。

新しいツールへのアクセスの確保は、効果的なインセンティブ戦略、研究資金提供者の方針、研究機関のガバナンス、研究開発を導く価値、規範、基準などを含み、研究開発の資金調達と実施方法と密接に関係している。結核に関する国連政治宣言にあるように、結核の研究開発は「ニュース主導、エビデンスに基づいたものであり、手頃な価格、有効性、効率、公平性の原則によって導かれるべきである」。これらの原則は、研究開発の早い段階から研究開発に適用されるべきである。

重要な進捗がみられた分野はあるが、結核の研究開発には長い間資金が不足している。偏見が病気の原因にも結果にもなり、貧しい人々や疎外された集団の多数の人々が主に影響を受け、他のどの単一の感染性病原体よりも多くの死の原因となっている、そして空気

感染する伝染病、という結核の公衆衛生上の特性を考え、各国は、強力な国際協力を含めて、新しい診断、治療計画、ワクチンの開発を促進し、すべての人がアクセスできるようにする義務がある。182

国連の経済的、社会的、文化的権利に関する委員会は、健康に関連する商品やサービスの利用可能性、アクセスの確保、受容性、精度に関して健康への権利を定義している。

・ 利用可能性は、十分な数量の健康商品とサービスを利用可能にすることを要求する。
・ アクセスの確保には4つの要素、つまり非差別、物理的なアクセス、手頃な価格、情報へのアクセスが含まれ、すべての要素が結核リスク集団に与える影響に注意を払う必要がある。
・ 受容性は、すべての医療施設、商品、サービスが医療倫理を尊重し、文化的に適切であり、性別やライフサイクルの要求に敏感であり、人々の健康状態を改善しながら機密性を尊重するように設計されていることを要求する。
・ 品質は、商品やサービスが科学的に及び医学的に適切であり、高品質であることを要求する。183

すべてのステークホルダーが、新しいツールの提供を含めた、研究開発プロセスのすべての段階でこれらの権利に基づく原則を尊重、保護、保証する方法により、結核の研究開発設計の推進と実施に関与する必要がある。

ボックス 6.5: 各国の青少年及び成人向けの新規結核ワクチン供給体制を確保する
新しいツールのうち、青少年及び成人向けの結核ワクチンは、世界的な流行に対して恐らくは最も大きなインパクトを持っているが、そのアクセスは大きな課題である。適切な計画と投資がなければ、広く使用される新しい結核ワクチンを展開するために必要な種々のキャンペーンとプログラムを実施するのに何十年もかかるかも知れず、青少年及び成人のワクチン接種普及を取り巻く課題は複雑である。

新しいワクチンの導入を妨げる可能性のある、プログラムとシステムのギャップを評価して対処するには、包括的な「戦略的アクセス」のオペレーションナルリサーチが必要だ。この研究には、商品コスト、

183 General comment no. 14, The right to the highest attainable standard of health (article 12 of the International Covenant on Economic, Social and Cultural Rights. Geneva: UN Committee on Economic, Social and Cultural Rights; 2000. http://docstore.ohchr.org/SelfServices/FilesHandler.ashx?enc=4sQ6QSmdBEDsFEovLCuW1AVC1KPsGueWIPIF1vF-E-MJ%2c7ey6%2baqy%7DmC0y%2BFt%2B5stGDNzEqA6SuP2r-0w%2F6sVBGTpvTSCbiO4XVFTqohY65auTBFqRQPWNZxL
価格設定基準、TPPの費用対効果、国のワクチンの準備状況及びワクチンの状況の評価といったさまざまな側面が含まれる。また、GaviやUNICEFなどの多角的機関によるライセンス製品の調達が事前承認されるように、開発プロセスの早い段階で事前認定（PSPQ）がされることが政策として適切であることを理解することも重要である。

青少年や成人に最も効果的に到達できるプログラムを特定し、提唱することも重要だ。たとえば、予防接種プログラムの将来に関する「生涯にわたる展望」に沿った形で、10代の若者にヒトパピローマウイルスワクチンを投与するのと同じプラットフォームを利用するなどだ。

新しい結核ワクチンへの国際的なアクセスは、証拠・技術・政策・資金調達・政治などと、プロセスに積極的に関与するエンドユーザー・コミュニティ・医師・国家結核プログラムと統合される必要がある。これらの活動は、研究開発から世界市場への新しいワクチンの円滑な移行を確実にし、個人の利益を最大化し、流行への影響を最適化するのに役立つ。

第2項 オペレーショナルリサーチの利用を拡大する

オペレーショナルリサーチには、医療システムやプログラムのパフォーマンスを向上させるための戦略、介入、ツール、知見を調査するために使用される幅広い研究活動が含まれる。184 近年の改善にかかわらず、品質が保証された、人間中心の結核治療の実施には、依然として大きなギャップが存在する。これらのギャップを埋め、結核の予防、診断、治療への普及的なアクセスを実現するには、オペレーショナルリサーチのための国レベルの能力を拡大することが不可欠である。オペレーショナルリサーチは、さまざまな集団内で新しいツールを導入して規模拡大を行うための最良の方法を見出すとともに、人々とコミュニティに結核リスクをもたらす根本的要素に手足がかりを行い、最良の治療結果を得るための社会サービスと医療の最良の組み合わせを理解するためにも必要である。185

研究資金の提供者は、オペレーショナルリサーチに具体的な金額を割り当てるとともに、低所得・中所得国（LMIC）内の実態とのギャップを埋めるためのエビデンスを構築するイニシアチブへ優先して資本供与を実施すべきである。

持続可能なオペレーションを組み立てるのは、オペレーショナルリサーチのためのキャパシティを確保するために、研究を国家結核プログラムに組み込んで、年間予算に資源を割り当てる必要がある。

オペレーションリサーチの主要な優先事項には以下が含まれる

重要な優先事項1: ライセンス取得から、効果的に使用されるまでの間の遅延を減らすために、新しいツール導入における初期段階の計画を周知し、ツールが各地域でどのように使用されているかを理解する。

重要な優先事項2: 積極的患者発見を最も効率的かつ効果的に実施する方法を理解する。これにより、保険システムが結核のリスクのある人々に積極的に働きかけ、スクリーニング、診断、適切なケアとサポートを受けられるようにする。

重要な優先事項3: 薬剤感受性結核と薬剤耐性結核の両方について、アクセスに対する社会的、法的、政治的、経済的障壁の評価・モニタリング・課題克服を通じて、治療・ケア・心理社会的サポートへのアクセスを改善する。

重要な優先事項4: 結核ケアと支援へのアクセスとツールの提供に関するあらゆる課題を改善するために、公共と民間セクターがどのように調整・協力できるかを理解する。

重要な優先事項5: 感染を減らすために結核感染管理を最適化させる。

重要な優先事項6: 病気の監視、モニタリング、結核プログラムの評価を行うための方法を改善する。

重要な優先事項7: 結核体験者コミュニティと結核回復者が、結核サービスの提供を含む一連の結核ケアの中で、さらにそれを越えて果たすことができる役割を理解する。

第3項　デジタルヘルスと精密医療

デジタルヘルスソリューションは、治療サポートと結核治療の質を向上させながら、コストを削減し、品質が保証された結核治療とサポートサービスを利用可能にし、すべての人々が利用できるようにする可能性を秘めている。結核の負担が高い多くの地域では、インターネットやスマートフォンへのアクセスは依然として比較的限定されているが、SMS機能を備えた携帯電話は一般的に普及している。新しいデジタルツールは、規則的な結核治

療への患者の協力それへの支援を改善し、人々の負担を軽減する。結核体験者コミュニティに働きかけて結核対策への反応をモニタリングする。

システムレベルにおいては、インドの Nikshay プラットフォームなどの新しいデジタルツールは、とくに患者登録と記録管理、臨床検査オーダー、疫学的サーベイランス及びある医師から別の医師への転医システムの改善に役立つ。他のデジタルアプリケーションは、薬剤の在庫管理、医療従事者、結核患者及び結核体験者のコミュニティに電子教育を提供するのに有効である。188

包括的な医療と支援におけるデジタル技術を通じた結核医療の改善のための可能性は、まだほとんど検証されていない。ただし、デジタルツールの 1 つであるストップ結核パートナーシップの OneImpact は、結核のモニタリングと評価システムを強化するために、結核体験者に、質の高いタイムリーな結核ケアとサポートサービスへのアクセスを報告し、地域ごとのモニタリング（CBM）を促進し、人々のニーズに対応している。結核治療用のデジタルツールの規模拡大を促進するために、WHO は近年、デジタルヘルスパイロットプロジェクトからエビデンスを収集し、デジタルツール用の目標とする製品性能（TPP）を開発し、結核終息のためにいかに上手くデジタルヘルスツールを実用化し、それに対した支払いについての助言を提供できるよう取り組んだ。189, 190

精密医療はまた、個人の臨床治療とケアの両方、そして結核に対する公衆衛生の対応の改善にも役立つ。全ゲノムのシーケンシングと解釈の分野におけるデジタルヘルスの新たな進歩は、最終的に従来の薬剤感受性試験（DST）に取って代わる可能性がある。臨床意思決定支援システムは、特定のニーズに基づいて最適化された医療を個人に提供するために臨床医をさまざまな方法で支援するコンピューターシステムである。191

人工知能（AI）は新しいものではないが、ディープラーニングニューラルネットワークの進歩により、過去 10 年間で健全を牽引してきた。ニューラルネットワークは音声認識に使用され、大きな成功を収めている。また、保健の分野では、画像認識のさまざまなアプリケーションに使用されることが多くなっている。画像認識のための AI は、特に胸部 X 線の読み取りや、人間が読み取りを行う他の領域で、結核に対して多数の潜在的な活用方法が

ある。TB REACH は、AI を使用して胸部 X 線を読み取る初期の多くの研究を支援している。最近の進展として、複数のサイトで複数のディープラーニング・リーディング・アプリケーションを検討した研究が公開された。この研究は、3 つの異なるディープラーニングアプリケーションが豊富な人間の読影者よりも優れていることを示した。AI を使用して胸部 X 線を読み取ることには、数値を標準化する機能、GeneXpert 検査費用の削減、胸部 X 線をトリアージの診断として使用する際の検出の向上など、複数の利点がある。AI を利用して胸部 X 線を読影することは、訓練を受けた人間の読影者が不足し、スクリーニングの高生産性（ハイスループット）に課題がある分野で、特に役立つ。

AI は、音を含む他のデータの分類にも役立つ。電気遠隔咳モニター、顕微鏡検査の自動読み取り、結核スクリーニングキャンペーンを実施する際のネットスコットを特定するためや、医療従事者が結核治療を受けている人々を識別するのを助けるための AI の使用など、結核への対応に有効である。AI の追加アプリケーションが開発されている。特別な注意とサポートが必要な場合がある。結核プログラムから生成される大量のデータは、新しい AI アプリケーションの開発と結核対策での使用において有効である。

表 6.6：結核デジタルツールのための目的製品プロファイルの概要

<table>
<thead>
<tr>
<th>機能</th>
<th>TPP：短い説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>患者のケア</td>
<td>1. 携帯電話によるビデオ観察治療（VOT）</td>
</tr>
<tr>
<td></td>
<td>2. 結核患者のための eHealth ポータル</td>
</tr>
<tr>
<td>サーベイランスとモニタリング</td>
<td>3. 結核のグラフィックダッシュボード</td>
</tr>
<tr>
<td></td>
<td>4. 結核の eNotify</td>
</tr>
<tr>
<td></td>
<td>5. 結核の ePV</td>
</tr>
<tr>
<td>検査室情報システム</td>
<td>6. 結核診断デバイスの接続</td>
</tr>
<tr>
<td>e ラーニング</td>
<td>7. 結核と喫煙に関する患者情報プラットフォーム</td>
</tr>
<tr>
<td></td>
<td>8. 結核と喫煙に関する医療専門家向けのウェブベースのトレーニング</td>
</tr>
<tr>
<td></td>
<td>9. 結核とタバコ治療のための臨床決定支援システム</td>
</tr>
</tbody>
</table>

デジタル保健ツールのアプリケーションが拡大を続け、情報通信技術へのアクセスが LMIC で成長を続け、AI がより高機能になる中、結核医療の質を向上させるためには、人々をサポートするためのデジタルツールの最適な適用方法を理解するためのオペレーショナルリサーチが引き続き不可欠である。デジタル技術が人との接触に取って代わる中、それが悪用され、支援と治療の質を向上させるという目的に相反し、プライバシーと自律に対する

人々の権利を侵害する可能性もある。したがって、デジタル保健アプリケーションを設計する過程で、結核患者及び回復者からの意見を求めることは依然として不可欠である。倫理基準の遵守は、デジタル保健ツールの適用におけるプライバシー、監視、アカウンタビリティ、公衆の信頼、データガバナンス及び管理の問題をナビゲートする過程でも重要である。

ボックス 6.6：TB REACH 治療遵守デジタル技術（DAT）プロジェクト

Wave 6において、TB REACHは、ビル＆メリンダ・ゲイツ財団の支援を得て、治療支援を強化し治療結果を改善するための治療順守デジタル技術（DAT）の使用に焦点を当てた13のプロジェクトに資金を提供した。これらのプロジェクトは12か国で実施されており、さまざまな集団と環境をサポートし、99DOTS、eviMED、SureAdhere（ビデオ監視技術、またはVOT）、その他の現地で開発された技術などのさまざまな治療順守デジタル技術（DAT）のツールを使用している。これらのTB REACH DATプロジェクトは、さまざまな区分の国と状況において、結核治療のためのDATの使用と実装を理解するまたとない機会を提供する。これから学んだ教訓は、これらのツールが予後に与える影響、課題と機会ならびに結核患者、医療事業者、結核プログラムでの使用に関連する世界的なエビデンスを結びつける。

詳細については、以下を参照のこと。
http://www.stoptb.org/global/awards/tbreach/wave-6DAT.asp
第7章 資源に関するニーズ

第1節 概要

結核への投資を増やすことは、引き続き喫緊の課題である。結核予防と治療に毎年少なくとも130億ドルを投資し、結核研究開発への資金を毎年20億ドル以上に増やすという、結核に関する国連総会ハイレベル会合の誓約を実行することにより、政府は世界を結核終息の軌道に乗せることができる。

世界計画の投資シナリオに資金を提供することにより（2018–2022）:
1. 各国は2022年の国連総会ハイレベル会合の治療目標に到達する
2. 2020年の結核対策の中間目標は1年後の2021年に達成される
3. 世界は、2025年の中間目標を達成するための軌道に乗る
4. 2030年までに結核を終息させるための最後の戦いに向けて、研究開発の新しいツール展開に向けた兆しが見える

結核予防とケアへの資金提供：結核予防と治療への投資収益率（ROI）は、支出1米ドルあたり44米ドルである。2018年から2022年の結核治療と予防のすべての資源ニーズを満たすと、350万人の子どもと150万人の薬剤耐性結核患者を含む4,000万人が結核の治療を受け、3,000万人以上が結核の予防的治療を受けられる。これにより、結核による死亡者が150万人減少し、4,800万の障がい調整生命年（DALY）を避けることができる。

新しいツールの研究開発への資金提供：結核を終息させるには、新しいツールを入手することが不可欠である。結核研究開発の資源ニーズを完全に満たすことで、結核のまん延を終わらせるために必要な新しい診断法、新薬、効果的なワクチンの開発につながる。結核の研究開発への資金調達が5年遅れると（不作為のコスト）、約200万人が死亡し、さらに1,390万人が結核を発症することになる。不作為のコストの詳細については、第6章を参照のこと。

これらの投資の大部分は国内資源と国際的な支援者からもたらされるだろうが、代替の資金源を用いることで劇的に投資を加速することができる。これには、民間部門の資金調達、ブレンドド・ファイナンス、ローンパイタウン、社会的健康保険、富裕層からの慈善活動、社会的影響力のある債券、マイクロ税金または税金、プールされたドナー信託などが含まれる。
第2節 優先すべき行動

結核予防と治療のための資金調達のギャップを埋めるために、以下の行動を優先させることが必要である。

政府:

- すべての結核高負担国の国家元首及び政府は、結核への国内資金を増額しなければならない。
- BRICS と上位中所得国は、国連総会ハイレベル会合の治療目標を達成するために増加した資金ニーズを完全に満たすために、結核の国内資源を増やすべきである。
- グローバルファンドの増資完了後、各国政府は野心的な国連総会ハイレベル会合の目標を達成するために、グローバルファンドの結核資金を最大限に活用できるよう、利用可能なすべてのツールを使用する必要がある。これには、国への割り当て額の完成および内閣の最適化の際に生じる優先順位付けが含まれる。
- 各国は、既存の結核予算内のコスト削減を通じて、結核サービスの拡大の一部に資金を提供することを検討すべきである。例えば、結核治療の分散化し、結核入院患者数を大幅に減らし、入院期間を短縮することが挙げられる。品質を低下させることなく結核プログラムの実施効率を改善する方法を模索する必要がある。
- 追加の外部資金を動員し、低所得国ならびに国内予算を増やすための財政的余地が限られているいくつかの低中所得国が利用できるようにする。
- 政府は国レベルで結核の投資事例を作成し、モデル分析とコスト予測を使用して、国家戦略計画、資源動員と資源配分のアドボカシーへの情報提供を行う。
- 国家結核プログラムと各パートナーは、社会健康保険制度、革新的な資金調達及び結核へのインパクトファイナンスの可能性を最大限に活用する。

開発パートナー:

- 世界銀行及びその他の開発銀行は、結核対策資金を利用できるようにするために、融資契約の交渉の際、融資や結核高負担国への助成に利用できるすべての手段を検討する必要がある。例えば、プレンドッド・ファイナンスメカニズムやローンパイダウンなどである。
- パートナーとアドボカシー団体は、戦略的に重要とみられる結核高負担の中所得国と協力して、結核の国内予算を 2 倍または 3 倍にする必要がある。
結核の研究開発資金のギャップを埋めるには、早急に次のことをしなくてはならない:

- グローバルコミュニティは、結核の研究開発への資金提供が共通の責任であることを認識する必要がある。各国は、国内の研究開発への総支出（GERD）の少なくとも0.1%を結核に充てる必要がある。
- 世界の結核患者の半数が居住し、研究開発能力が高いBRICS諸国は、結核研究開発への資金を大幅に増やす必要がある。
- 欧州及び発展途上国の臨床試験パートナーシップや国際保健革新技術ファンドの資金メカニズムにプールされた資金からの結核研究開発への支援を強化する。
- 革新的な資金調達メカニズム、民間セクターの資金調達、新興の資金調達メカニズムを活用して、新しいツールの開発を促進できるよう、資金を提供する必要がある。

第3節 国連総会ハイレベル会合の目標達成に向けた投資要件

政府が結核に関する国連総会ハイレベル会合で誓約した目標を達成するためには、現在の介入と新しいツールの開発の両方のための資源を大幅に増やす必要がある。この投資の利益は、人間的および経済的にも大きなものになる。

2018年から2022年間で合計778億ドルが必要とされ、内訳は次の通りである。

- 結核の予防と治療の提供に、合計で65億ドル。
- 新しいツールの研究開発と基礎科学研究に、合計128億ドル。
  - 新しい結核診断法、治療薬、そして少なくとも1種のワクチンの研究開発に少なくとも108億ドル、年間平均21億6000万米ドル。
  - 結核に関連する基礎科学研究に合計20億ドル、年間平均4億ドル。

結核予防と治療のための資金調達の詳細を以下に示す。研究資金の詳細については、第6章で述べている。

図 7.1 は、結核の予防と治療のための世界規模での資源ニーズ、資金調達の現在の傾向がそれ以上改善しない場合に利用可能な資金調達、そして、その結果生じる資金不足である。
### 図 7.1: 世界レベルで見た結核予防及び治療の資源ニーズ（単位：10 億米ドル）

![グラフ](image)

### 表 7.1: 結核予防と治療のための資金ニーズ（単位：10 億米ドル）

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>全世界合計</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計（全世界、OECD 諸国を含む）</td>
<td>9.24</td>
<td>11.18</td>
<td>13.64</td>
<td>15.15</td>
<td>15.61</td>
<td>64.82</td>
</tr>
<tr>
<td>合計（全世界、OECD 諸国を除く）</td>
<td>8.54</td>
<td>10.48</td>
<td>12.97</td>
<td>14.51</td>
<td>15.00</td>
<td>61.50</td>
</tr>
<tr>
<td><strong>所得別</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>低所得</td>
<td>0.87</td>
<td>1.13</td>
<td>1.60</td>
<td>1.85</td>
<td>1.95</td>
<td>7.38</td>
</tr>
<tr>
<td>低中所得</td>
<td>3.20</td>
<td>4.35</td>
<td>5.88</td>
<td>6.86</td>
<td>7.19</td>
<td>27.48</td>
</tr>
<tr>
<td>高中所得</td>
<td>4.51</td>
<td>5.05</td>
<td>5.55</td>
<td>5.86</td>
<td>5.92</td>
<td>26.90</td>
</tr>
<tr>
<td>高所得</td>
<td>0.66</td>
<td>0.65</td>
<td>0.61</td>
<td>0.58</td>
<td>0.55</td>
<td>3.05</td>
</tr>
<tr>
<td><strong>所得別グローバルファンド支援対象国</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>低所得</td>
<td>0.87</td>
<td>1.13</td>
<td>1.60</td>
<td>1.85</td>
<td>1.95</td>
<td>7.38</td>
</tr>
<tr>
<td>低中所得</td>
<td>3.20</td>
<td>4.35</td>
<td>5.87</td>
<td>6.85</td>
<td>7.19</td>
<td>27.46</td>
</tr>
<tr>
<td>高中所得</td>
<td>1.57</td>
<td>1.82</td>
<td>1.96</td>
<td>2.00</td>
<td>2.04</td>
<td>9.39</td>
</tr>
<tr>
<td>合計</td>
<td>5.64</td>
<td>7.30</td>
<td>9.43</td>
<td>10.70</td>
<td>11.17</td>
<td>44.24</td>
</tr>
<tr>
<td><strong>世界計画による国区分</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高 MDR 負担</td>
<td>2.53</td>
<td>2.74</td>
<td>2.97</td>
<td>3.16</td>
<td>3.21</td>
<td>14.60</td>
</tr>
</tbody>
</table>
表 7.1 は、結核予防と結核が 2022 年の国連総会ハイレベル会合の治療目標を達成し、世界の結核を終わらせるための年間資源ニーズ（2018～2022）を示している。資源のニーズは、世界全体及びさまざまな国のグループに対して示されている。世界の資源ニーズを分析すると、OECD 以外の国では 610 億米ドルが必要である。また、2018 年から 2022 年の期間にグローバルファンドの資金調達が可能な国では 440 億米ドルが必要である。各国の資源ニーズに関する情報は、ウェブサイト（http://stoptb.org/resources/countrytargets/）から入手可能である。
図 7.2：結核予防及び治療のための資金調達ニーズの費用区分、2018〜2022年

一般的な医療システムの費用区分（第1選択と第2選択の両方）には、病院外来診察、入院費、外来医療費及び結核関連製品の流通費が含まれる。これらの費用は多くの場合、国
結核とHIVのコラボレーションには、結核・HIVを調整する機関の合同トレーニングとそのための計画、結核患者へのHIV検査、結核・HIV双方の情報共有を教育が含まれる。

結核予防的治療の費用区分には、予防的治療に関するすべての医薬品が含まれるが、結核感染検査は5歳以上の接触者の一部のみを対象としている。従来のイソニアジドベースの治療方式は、新しいリファベンチンベースの治療方式に徐々に置き換えられている。予防治療を開始する前の、接触者調査と活動性結核除外の費用は、これらの活動がすでに第1選択のプログラム費用と結核とHIVのコラボレーションに含まれているため、ここには含めていない。同様に、結核予防的治療の人件費は、第1選択及び第2選択のプログラム費用に含まれている。

イネーブラー費用の区分には、結核の予防と治療を迅速に拡大するための環境を提供する活動が含まれる。これらのイネーブラー活動費用には、アドボカシーとコミュニケーション、コミュニティシステムの強化と関与、民間セクターにおける結核治療、患者の支援と保護、デジタル技術の整備などが含まれる。一部の国では、これらの活動の一部がプログラム費用区分に含まれているが、予算が不十分である。これらのイネーブラー予算の割合は、他の国または同じ区分の国に適用された成功事例に基づいて算出されている。例えば、民間セクターの結核治療は、民間セクターによる結核医療が多い国にのみ適用されている。
年間資源のニーズは2018年から2022年にかけて増加すると推定されている。これは、診断され治療される人数の拡大により、いくつかの費用区分において増大が起こると予想されるためである。研究施設にかかる費用は最も増加している。これは診断技術の変化とともに、より多くの人々が結核検査を受けると予想されるためである。

第4節 原価計算手法と制限

資源のニーズは、WHOの結核財務データベースから推計している。これには、100か国以上から報告された予算に加え、WHOが独自に推計した医療システムの費用が含まれる。これらのデータから導き出された費用区分毎の単価は、専門家意見に基づいた将来への見通しをもとに調整され、TIMEモデルの治療規模拡大目標に当てはめられた。WHOへの報告がない国に関しては、モデル分析の一部に学習アプローチを使用し、単価を計上した。

原価計算法と制限には特定の制限があり、さまざまな費用区分がまとめられたものをWHOに報告する方法では、費用区分を他の方法で分類できない。さらに、2018年から2022年までの原価計算は、現在利用されていない新しい診断薬や治療薬の導入を考慮していない。

世界計画では、単位コスト、新しい介入のコスト、そして国内投資の追跡と改善に対する投資を増加するとともに、国家結核プログラム、国の医療費及び国際的な開発パートナーからの財務データをより堅い方法で集約することを推奨している。さらに、財務上の影響をよりよく理解するために、データ集計の時点で、さまざまな価格区分を区分けする必要がある。

政府は結核の流行に関して国家レベルのモデルを実施すべきであり、結核を終わらせための国家戦略の計画と投資事例を報告するための詳細な原価予測を作成すべきである。国家結核プログラムと結核のアドボカシー実施者は、これらの国の戦略的計画と投資事例を使用することで、国の予算編成プロセスに合わせた結核資金の増額と、ドナーの関与を主張することができる。
ボックス 7.1：世界計画により何が達成されるのか？

患者は治療され、命が救われ、結核の終息に向けた前進が見られる。
2018–2022年の結核治療と予防に関するすべての資源ニーズを満たすことは、次のことにつながる。

- 以下の人々を含む、4,000万人が結核の治療を受ける。
  - 350万人の子ども
  - 150万人の薬剤耐性結核患者
- 3,000万人以上が結核予防的治療を受ける。
- 結核による死亡が150万人減少する。
- 4,800万人の障がい調整寿命年（DALY）が回避される。

結核のための新しい診断薬、治療薬、ワクチンが開発される。
新しいツールを開発するための資源ニーズを完全に満たすことは、結核の流行を終わらせるために必要な新しい診断法、新薬、効果的なワクチンの開発につながる。
結核研究開発への資金調達の増加を5年遅らせると、以下のようになる。

- さらに200万人が結核で死亡する。
- さらに1,390万人が結核を発症する。
- 結核の結果として、4,980万（割引計算なしで7,510万）障がい調整寿命年（DALY）が失われる。
- 結核治療単独で、142億米ドル（割引計算なしで216億米ドル）の追加費用が発生する。
- 1,720億米ドル（割引計算なしで2,590億米ドル）の生産性が失われる。

（不作為のコストに関する追加の議論については第6章を参照のこと。）

投資収益率（ROI）

結核プログラムが人々に効果的な予防と治療を提供し、死と障がいを防いだ際、人々は副次的な経済的利益を受ける。第1に、結核の予防により医療への家計支出を節約できる可能性がある。そして、結核が予防される、もしくは効果的に治療されると、世帯員は生産的な仕事を継続または再開することができる。
ROI分析は、健康への投資に関するランセット委員会の方法論に基づいて世界計画2018-2022のために実施され、2020年から2022年までの新しい増資サイクルのROIを推定するために、グローバルファンドの協力のもと、利益コスト分析のための新たな指針を採用することにした。

表7.2は、世界計画の活動に投資されたすべての経済的利益（米ドル）とROIを、国別グループと所得状況によりまとめたものである。

世界計画2018-2022で提唱されたように、ROIは、結核の予防と治療に費やされる1米ドルにつき43.7米ドルの投資効果がある。投資の正味の経済的利益は7,110億米ドルと推計される。

ROIは1：44となり、世界計画2018-2022に基づく結核予防と治療の規模拡大は、SDGsにおける最高の投資の1つになっている。

表7.2：世界計画2018-2022を実施することによるROIと正味の経済的利益

<table>
<thead>
<tr>
<th>ROI</th>
<th>経済的利益</th>
<th>ROI</th>
</tr>
</thead>
<tbody>
<tr>
<td>全世界</td>
<td>711,000</td>
<td>43.7</td>
</tr>
<tr>
<td>国別グループ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>高MDR負担</td>
<td>18,000</td>
<td>8.2</td>
</tr>
<tr>
<td>高TB/HIV、SADC</td>
<td>86,000</td>
<td>48.3</td>
</tr>
<tr>
<td>高TB/HIV、SADC以外</td>
<td>62,000</td>
<td>16.5</td>
</tr>
<tr>
<td>中程度の負担、COE</td>
<td>3,000</td>
<td>2.9</td>
</tr>
<tr>
<td>高い負担、民間部門</td>
<td>177,000</td>
<td>40.4</td>
</tr>
<tr>
<td>中程度の負担、中所得</td>
<td>33,000</td>
<td>55.4</td>
</tr>
<tr>
<td>インド</td>
<td>204,000</td>
<td>184.4</td>
</tr>
<tr>
<td>中国</td>
<td>66,000</td>
<td>58.7</td>
</tr>
<tr>
<td>低負担、高所得</td>
<td>2,000</td>
<td>632.4</td>
</tr>
<tr>
<td>所得別</td>
<td></td>
<td></td>
</tr>
<tr>
<td>低所得</td>
<td>39,000</td>
<td>12.7</td>
</tr>
</tbody>
</table>

ボックス 7.2：結核ケアへの投資は保健システムに長期的な利益をもたらす

結核への投資は、長期的に医療システムを強化し、他の病気や感染拡大と戦う能力を高める。医療システムの強化は、いくつかの方法で達成できる。

まず、早期かつ効果的な結核診断に投資することで、保健システムの診断、検査及び患者発見のキャパシティが持続的に構築される。結核の症状は特定のものではなく、複数の疾患において発症する。したがって、詳細やX線などのツールには、結核以外にもさまざまな用途がある。よって、早期の結核症例発見を改善する努力をすることで、特に肺に影響を与える他の病気の早期発見に正の影響を与えることができる。

結核検査室のネットワークは、標準化と精度保証プロセスを確立することで知られており、これは、公衆衛生検査一般的の質に対して、全面的にプラスの影響を与えることができる。世界計画では、結核の検査と診断機能を保健システムに統合することで、検体輸送によりアクセスを改善することが求められている。それは、早期に疾病を診断するための保健システムを強化するための経路として、よく統合された結核プログラムを定義している。

第2に、結核の接触者調査を強化する投資は、エボラ出血熱などの感染症の発生時にも利用できるシステムを構築する。これは、広範な接触者調査を実施するために、医療施設とコミュニティの両方の迅速な動員を要するものである。

第3に、結核との闘いには空気感染対策への投資が必要である。このような投資は、インフルエンザや呼吸器症候群などの空気感染の発生に迅速に対応する医療システムの能力を構築する。

第4に、結核治療には患者や地域社会との長期にわたる相互作用が必要であるため、結核への投資は、他の医療プログラムへのこれらの地域社会との全体的な関与を強化することにもつながる。

第5に、結核治療には強力で信頼性の高い治療薬のサプライチェーンシステムが必要である。これらのシステムをさらに改善し、各国のより広範な医療システムに統合することは、他の疾病のサプライチェーン改善においても医療システムに直接的な利益をもたらす。

最後に、商品ベースまたは直接コスト以外の費用が、費用の大部分を占めている。これらには、検査室の強化、医療システムの構成要素の改善、人材育成が含まれる。これらはすべて、保健システムの全体的な強さに対して持続的にプラスの影響を与えるであろう。194

<table>
<thead>
<tr>
<th>所得</th>
<th>308,000</th>
<th>36.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>高中所得</td>
<td>269,000</td>
<td>96.1</td>
</tr>
<tr>
<td>高所得</td>
<td>95,000</td>
<td>57.8</td>
</tr>
</tbody>
</table>

194 Harries A, Jensen P, Zachariah R, et al. How health systems in sub-Saharan Africa can benefit from tuberculosis and
第5節 世界計画のための資金源

大抵の場合における、結核への投資が持つ「全世界公共財」の性質が、それを幅広い社会的利益を伴う資金調達の優先事項としている。実際に、結核への投資は、すべてのSDGsのターゲットの中でも最高のROIをもたらしている。

コペンハーゲン・コンセンサスセンターは、結核対策に投じられた資金は1米ドルあたり43米ドルの恩恵をもたらすと試算している。また、2019年1月の会議で、ストップ結核パートナーシップ理事会は行動要請を発表している。

結核に関する国連総会ハイレベル会合の2022年までの目標に到達するために、増加する資源のニーズと深刻な資金ギャップを認識し、理事会は以下を要請する。

1. グローバルファンドへの増資完了によって、野心的な結核に関する国連総会ハイレベル会合の目標を達成するために用いる結核の資金を最大化するために、利用可能なすべてのツールを使用する。これには、グローバルファンドの各国への割り当ての完全な支払い、触媒的資金の拡大、ポートフォリオ最適化へ優先的に取り組むことなどが含まれる。

2. すべての結核高負担国の政府首脳が結核に対する国内資金を増額する。ストップ結核パートナーシップとそのパートナーは、戦略的に重要な、高負担の中所得国と協力し、結核の国内予算を2倍または3倍にする。

3. 結核に資金を提供するために、世界銀行及びその他の開発銀行は、融資契約及び結核高負担国への助成に利用可能なすべての手段（ブレンデッド・ファイナンスメカニズムを含む）を信用協定の交渉中に、確実に検討する。

4. ストップ結核パートナーシップは、社会健康保険制度、革新的な資金調達及び結核へのインパクトファイナンスの可能性を最大限に引き出すために各パートナーと協力する。

5. 結核の研究開発への資金提供は共同責任であるという国際社会の認識をもとに、ストップパートナーシップ理事会は、国が現地または地域の研究インシシアチブを支持する可能性があることを認識し、結核に関して、各国に特定の研究開発目標を策定するという提

---


195 “Global public goods” are defined as those goods that are both “non-rival” (i.e., anyone can consume the good without affecting the utility derived from its consumption) and “non-excludable” (i.e., once the good is produced, no one can be prevented from enjoying it). The World Bank Group A to Z. Washington, DC: World Bank; 2015.


197 The Stop TB Partnership Board calls for a dramatic increase in funding for TB. Geneva: Stop TB Partnership; 2019.

https://bit.ly/2T1XlbW
案を支持する。

6. 投資の機会を特定し、世界的な結核対応の資源動員のための戦略的ガイダンスを理事会と事務局に提供するため、ストップ結核パートナーシップは、結核ファイナンス専門家たちとチームを結成して、特にUHCの文脈において結核への資金を増やすために利用できる従来のもしくは革新的な戦略オプションの作成に取り組む。

実施と研究には、国内資金、外部資金、革新的資金という3つの広範な資金源が存在する。

国内資金
高所得国、BRICS諸国、中高所得国では、結核への投資のほばすべが国内資源で賄われている。ロシア連邦、他の東ヨーロッパ諸国においては、人間中心の結核治療というトレンドを継続しており、入院する患者数を減らし、入院期間を短縮することによって、従来の結核予算内のコスト削減を行い、結核サービスの拡大にかかわる資金を投入できる可能性がある。その他の中所得国で結核負担の大きい国々では、結核治療を一般医療サービスに統合することで、結核に関する活動を合理化することができる。しかし、南アフリカの例がそうであるように、国が特別な予算枠を設ける用意ができている場合にのみ、結核終息に焦点を当てたパラダイムシフトが可能になる。インドは最近、結核の国内予算を4倍に増やした。これは、政府高官による政治的意思と、世界目標よりも5年前の2025年までに結核を終わらせるという、首相の明確なビジョンに牵引されている。インドのように結核の国内予算を劇的に倍増させる取り組みは、他の中所得国や結核高負担国でも必要である。

低所得国では、経済の実態は大きく異なる。低所得国のうち、結核負担の大きい国のほとんどは、結核対策のための資金の高い割合を外部資金に依存しているからだ。さらに、大部分の結核予算は枯渇、もしくは不足している。これらの国々は、開発銀行からの譲与的レートによる助成や融資を含む、外部からの資金援助を増やす必要がある。

世界計画で概要が記されている取り組みへ資金を提供するための資金源の適切な組み合わせを決定するためには、各国の状況を考慮する必要がある。国によって、それらの状況は大きく異なる。国からの、より良い財務報告システムを通じて、あるいは、存在する場合には国家保健会計（National Health Account）を通じて、国内の資金増加の可能性を追跡する必要がある。アフリカ連合などの政府間調整メカニズムも、結核に対する国内資金の増加を促し、モニタリングする上で、大きな役割を果たさなければならない。

国内の結核プログラムの効率を高める
結核の政策立案者とプログラム実施者は政策決定を行う際、困難に直面している。なぜなら
ら、結核という病気の負担が常に高い上に、資源が限られているため、新しい技術による手法の導入と、安価なものので、古くて効果的ではない既存の手法を常に比較する必要がある。課題解決のためには、適正効率化への転換が必要である。つまり、最も優先度の高い地域の対象集団に提供される医療介入について最も費用対効果の高い組み合わせを使用して、合理化された結核医療サービスの提供を行うことで、その効果を最大化することである。ストップ結核パートナーシップの世界抗結核薬基金 (GDF) から高品質の治療薬と診断薬を安価に調達することに、各国は結核への国内予算を作り出すことができる。こうした経緯から、結核に関する国連総会ハイレベル会合の政治宣言はすべての国に GDF の活用を推奨している。

利用可能な資源を利用して結核の負担に対処する方法を推計するため、世界計画では、介入のコストと有効性に関するデータを組み込んだ分析的手法を実際に利用するよう各国に要請している。また、品質を低下させることなく結核プログラムの実施効率を改善する方法を模索することも各国に提唱している。

市民社会が、明確に、国の中で結核対策の効率化と範囲拡大に参画するため、政府の国内基金から現地 NGO に資金を提供するための社会契約メカニズムを構築する必要がある。社会契約メカニズムの策定は、アクセス、サービスの質、公平性、インパクトの大幅な改善につながる。

社会健康保険（SHI）
社会健康保険（SHI）は、国内の資金を調達し、医療サービスを供給するために資金をプールできるメカニズムである。欧州の SHI システムでは、従業員とその雇用主が、被保険者とその扶養家族がサービスのパッケージ作成に貢献している。多くの政府は、また、保険システムの持続可能性を確保するために助成金を出している。

これらの貢献プログラムは、裕福な人々が貧しい人々よりも多くを負担し、病気の人が健康な人よりも多くの資金を支払わないように設計されている。さらに、一部の政府は、貧困層や失業者などの支払いを行えない人々に対して、保険料の負担補助を行うことで、プログラムの対象を広めている。

SHI システムは一般に、結核に罹患する可能性が低い富裕層に高い負担率を請求し、結核に罹患する可能性が高い貧困層に対して、無料で補償を提供することが多い。SHI のメカニズム

---

https://www.who.int/health_financing/documents/cov-pb_e_09_04-10qshi/en/
ムは、結核治療とサービスへのアクセスを拡大するために、利用できる資金の全体レベルを上げながら、健康の不平等を減らし、結核患者に生じる壊滅的なコストを回避し、結核に向けた資本の再分配の実施に役立っている。

多くの国が、UHC を達成するための取り組みの一環として、SHI の導入や規模拡大を計画している。結核プログラムは、SHI が提供する保険のパッケージに結核医療を含めるための機会を捉える必要がある。あらゆる部位・型の結核は、公共、民間双方の医療システムが対応するため、双方が SHI 制度の適用範囲に可能な限り含まれるべきである。また、SHI スキームが、より包括的で、移住者などの主要な人口をカバーできるようにする努力も必要である。

UHC への資金提供については、いくつかの国が保健財政メカニズムを変更し、SHI の有無にかかわらず、保険サービスの戦略的な購入方法とさまざまな提供者による支払いメカニズムを導入している。このような保健財政的手法から利益を得るために、結核プログラムはこれらの議論に積極的に参加する必要がある。

国際金融
図 7.4 は、グローバルファンドの対象国において、国際的な資金調達を増やす必要性を示している。ここでは、国内の資金源、グローバルファンド、その他の外部資金源から予想される資金と、国がこれらの資金源に加えて必要とする追加の資金を示している。
図 7.4：2020 年から 2022 年にかけて、グローバルファンドの支援対象国で必要となる 31 億米ドルの資金源：考え得る資金源とギャップ

国内資金の数値は、グローバルファンドが作成した楽観的な予測シナリオに基づいているため、グローバルファンドやその他の国際的な資金源からの追加拠出が大幅に必要であることは明らかである。このような追加の資金がなければ、2022 年の目標は達成されない。

グローバルファンド対象国のうち、グローバルファンドの 2020 年から 2022 年までの資金調達サイクルで必要な資金総額は 313 億米ドルである。国内資金増加という楽観的なシナリオと現在のレベルで外部資金が継続的に提供された場合、最大 160 億米ドルが提供されるものの、残りの資金需要 153 億米ドルを追加で調達する必要がある。

ローンバイダウンや債務から補助金への転換を含む、開発銀行からのローン

世界銀行と他の地域開発銀行は、国々に貸付金を提供している。これは、賢く使用されれば、結核に利用できる実質的な資源となる。そのような貸付は、数年前から結核プログラムに資金を提供するために国によって使用されている。最近では、さまざまな提供元からの貸付と付与を織り交ぜるために革新的な手法が使用され、借入国にとってより魅力的なものになっている。そのような手法の一つは、世界銀行、二国間ドナー、または民間セクターからの助成金を使用して、世界銀行または地域開発銀行からの貸付の利子を支払うことである。これはしばしば「ローンバイダウン」と呼ばれ、たとえば、インド政府は結核プログラムのために 5,000 億米ドルの世界銀行の融資にアクセスし、約 4,000 万米ドル
ルの利息はグローバルファンドによって支払われた。低所得国では、貸付金を助成金に変換できるように別の手法を導入することもできる。

富裕層と寄付誓約
寄付の誓約は、世界の最も裕福な個人や家族が、彼らの富の大部分を慈善事業に捧げるすることを意味する。2019年の時点で、204人が総額5,000億米ドル以上を誓約している。これは、結核対策の資金源としてこれまでに利用されたことがない。

革新的な資金調達
国際保健には、革新的な資金調達メカニズムを開発してきた強力な実績がある。たとえば、グローバルファンドとユニットエイドは、主に伝統的なドナーに支えられているが、大量の資を低所得・中所得国（LMIC）に迅速に振り向けるための資金の動員、プール、チャネリング、割り当てなど、革新的な手法を開発している。199これらのメカニズムは、結核と闘いにおいて引き続き重要な役割を果たすだろう。グローバルファンドだけでも、国際的な資金調達の70％近くを拠出している。200しかし、今ではとは異なるドナーからの資金を拡大させる必要がある。

インパクト債
インパクト債も追加の資金を確保できる可能性のある調達方法である。これは、合意された結果を達成するための介入に対して投資家が前払いを行う資本スキームであり、彼らはデリバリー機関と協力して、これらの結果が確実に達成されるようにする。介入が成功した場合、成果への資金提供者（政府とドナーの両方またはどちらか）は、達成された結果の水準に応じたリターンを投資家に支払う。インパクト債は、この意味では結果に基づく他の方式と似ているが、先行投資を伴う。これにより、サービス提供者は手頃な価格で資金を確保できる。インパクト債には主に2つの種類がある。都市または地区の規模で実施される社会的インパクト債（SIB）と、国または国の重要な地域の規模で実施される開発インパクト債（DIB）である。

インパクト債は、投資家による前払い資本の提供を促進し、高負担の国々で結核診断・治療を改善するためのさまざまなサービスを支援できるかもしれない。

---


これらの活動は社会的及び経済的利益をもたらすだろう。社会的影響は、疾病の負担が軽減され、結核患者が減少するとともに人口の生産性が向上することによってもたらされる。結核治療を提供している、鉱業等の企業や政府は、患者の治療にかかるコストが低下することにより経済的利益を享受する。政府はまた、より経済的に生産的な人口から生み出される増加した税収の恩恵を受けるだろう。これらの貯蓄は、投資家に返済される資本の一部を形成する。

**ブレンデッド・ファイナンス（Blended Finance）**
ブレンデッド・ファイナンスは、結核プログラムや研究開発に利用できる資金を増やす可能性がある、もう1つのフレームワークである。その名前が示すように、この手法は、開発目標の資金を調達するための公的資本と民間資本の効果的融合を促進する。

ブレンデッド・ファイナンスの主な目的は、民間セクターからの投資を解放することである。通常、結核テスト等の新しいツールに関する臨床試験はリスクの高い活動であり、会社の経済的利益は保証されていない。ブレンデッド・ファイナンスは、研究や介入設計の技術支援など、企業が対応できないプログラムコストに公共と慈善事業の資金を提供することで、そのリスクを軽減するものだ。故にこの手法は、民間部門の投資、技術革新だけではなく、棚上げされてしまいかねないプロジェクトの専門知識を活用する可能性を秘めている。

**マイクロ課税・税金**
消費財への課税や小額の課税も、世界的な健康のための資源を生み出すことができる。最も知られている例は、航空券の購入に対する少額の税金である。2006年にフランスで開始されたこの税は、現在カメルーン、チリ、コンゴ、マダガスカル、マリ、モーリシャス、ニジェール及び韓国で適用されている。この資金は、HIV、結核、マラリア治療薬の購入を目的としたユニットエイドへの支援に用いられた。2019年現在、エコノミクラスの航空券に対する約1米ドル、ビジネスクラスの座席に対する40米ドルの課税により、ユニットエイドは13億米ドルの健康プロジェクトポートフォリオを管理している。そのような課税の機会として、他にも採取産業、加工、消費、金融の分野が未だ手付かずとなってい

---

201 Innovative financing for global health R&D. Santa Monica: Milken Institute; 2012. [https://assets1c.milkeninstitute.org/assets/Publication/InnovationLab/PDF/FIL-Global-Health-Report.pdf](https://assets1c.milkeninstitute.org/assets/Publication/InnovationLab/PDF/FIL-Global-Health-Report.pdf)

ドナー信託のプール

ドナー信託のプールは、ドナーを基本とする信託がプールされた資金であり、定められた社会的目標を満たすために組織に助成金を配分する。その主な特徴は複数ドナーの手法を含み、さらなる注目が必要とされる問題に対する認識を高めながら、プログラムへの資金提供をより適切に調整することを目的としている。

信託は、助成プロセスを簡素化し影響を最大化するのに有効である。たとえば、Power of Nutrition は 2015 年に英国政府（DFID）と Children's Investment Fund Foundation から 1 億 5,000 万米ドルの寄付を受けて設立された、独立した慈善団体である。その後、UBS Optimus Foundation による追加の資金拠出が行われ、世界銀行と UNICEF が実施パートナーとなった。この財団は、低栄養やその他の発育障害を含む増加が続いている特定の健康目標への資金提供の効率を高めるために活動している。フォワードは、各国に対して、問題に取り組むために相応の資本 (Matching capital) を提供することを要求している。

企業の社会的責任（CSR）

CSR は、企業が社会に貢献することで社会的責任を果たすためのメカニズムであり、その中には社会、健康、環境問題のための活動が含まれる。結核対策が大きい国で事業を行う企業は、結核に対する投資、労働保険について奨励される必要がある。近年、ナイジェリアの石油会社 (Agbami Partners) が結核クリニックを建設し、設備整備、政府に寄贈した。結核の技術革新のための企業部門の資金調達の増加において、インド 203 とインドネシア 204 でも進展がみられている。

第6節 研究開発のための資金調達ニーズを満たす

結核の研究開発に資金を提供する緊急の必要性

結核の流行は、既存のツールのみを用いていただけでは終息できない。各国は、結核に関する国連総会ハイレベル会合の目標に合わせて取り組みの規模を拡大することにより、大きな利益を達成できる。しかし、2025 年以降、既存のツールの影響は小さくなり、結核終息戦略の目標を満たすために結核の流行曲線を大幅に減少カーブに転じさせるのに十分で

はなくなる。日々結核の流行は続き、人的及び経済的コストは増加の一途をたどっている。これら費用増を回避するためには、今日の新しい診断技術、投薬計画、ワクチンへの投資を緊急かつ迅速に拡大することが不可欠である。その投資を1年でも遅らせると、追加の治療費だけでなく数十億ドルの費用がある可能性がある。結核の研究開発、新しい結核ツールのアクセスと最適化については、第6章で詳しく述べている。

結核と戦う新しいツールの研究開発のための資金調達には大きなギャップがある。2017年には合計7億7200万ドルが結核の研究開発に投資されたが、これは年間20億ドルの資金調達目標の38.6％にすぎない。205この資金不足により、研究者は資金環境に取まるようにプロジェクトを制限しなければならず、新しい診断技術・治療薬・ワクチンの開発のために必要な創造性・技術革新・実験は阻害される。極めて重大なこととして、不十分な資源は、結核研究開発に参入またはそれを継続しようととする研究者の数を制限してしまう。

結核研究開発のための資金調達基盤の多様化
現在のパートナーシップを維持し、新しいドナー、投資家、民間セクターのアクターとの資金調達基盤を多様化することが優先事項である。

これらの取り組みはさらに増やしていかなければならない。各国の政府、公共部門、慈善寄付者、とりわけビル・ゲイツ財団は、結核の研究開発に不可欠な資金を提供している。一部の製薬業界パートナーも、資源と専門知識に投資している。

いずれにせよ、すべての結核のほぼ半分を占め、重要な研究インフラストラクチャーと容量を有するBRICS諸国からの投資拡大は、大きな後押しとなるだろう。資本金が500億ドルに上るBRICS新開発銀行（NDB）の設立は、BRICSの研究開発への投資の機会となる。

ヨーロッパと途上国の臨床試験パートナーシップや国際保健革新技術基金などのプールされた資金調達メカニズムを含む、追加の資金源がいくつか存在する。これらのイニシアチブを強化し、補足し、適切に調整することが不可欠である。

結核研究開発の複雑さ、コスト及びリスクには、複数の資金調達プラットフォームとパートナー及びプッシュメカニズムとプルメカニズムの組み合わせが必要である。

---

プッシュメカニズムは、従来の助成金、研究開発活動への資金提供を通じて研究者や開発者のリスクを軽減する。プッシュメカニズムは、研究開発への民間投資を奨励する。たとえば、2007年、米国食品医薬品局（FDA）は、顧みられない疾病の薬を発見する企業に付与される優先審査パウチャー制度を導入した。これらのパウチャーは流通市場で販売できる。206診断技術については、既存のソリューションの広範な実装を通じて市場を拡大すると同時に、新しいツールをより安価で提供することは、需要創出の好循環を推進するのに役立つ。結核の研究開発資金の必要性の詳細については、第6章を参照のこと。

---

ジェノスカラー®シリーズ

結核菌群リファンピシン耐性遺伝子同定キット
RFP-TBⅡ
承認番号 22700AMX01037000

結核菌群ピラジナミド耐性遺伝子同定キット
PZA TB
承認番号 22400AMX00673000

結核菌群イソニアジド耐性遺伝子同定キット
INH TB
承認番号 22400AMX01413000

ジェノスカラー®シリーズは結核菌群薬剤耐性遺伝子の変異を検出する試薬です。
我々は、“日本リザルツ”を応援しています！
「良い仕事」へのチャレンジ、「仕事の質」、「利益の質」、「顧客満足度の質」にこだわり
継続的な進化を求め、五十鈴商事プレミアム『NEXT ONE』への挑戦。

**OUR VOLUNTEER**

**Part.1 TICAD 7（第7回アフリカ開発会議）出展**
(2019/8/28～30パシフィコ横浜会議センター開催)
日本の文化「金太郎飴で世界を笑顔に」
㈱金太郎飴本店社、日本リザルツ、㈱五十鈴商事3社共同出店
第7回のアフリカ開発会議（TICAD7）、イベント参加に際し
㈱金太郎飴本店社並びにNGO日本リザルツ白須代表の協力を
受けて、金太郎飴を世界に発信して「令和」と「TICAD」始で、
“金太郎飴で世界平和の実現”をテーマに掲げました。

**Part.2 国連 HLPFウィーク: リーディング・グループ**
イベント等への学生派遣プロジェクト
国連総会の舞台に、日本リザルツと共に学生4人を派遣
(2019/9/26 ニューヨーク開催)
我々は、“日本リザルツ”を応援しています！
全ての企業活動をお客様の視点に立ち、世界貢献を目指して行動する

OUR VOLUNTEER

サンキューセミナー 第9回国際母子栄養改善講演 TICAD 7

パキスタン・シーアールコートで大規模農業を展開
米(バスティ)/麦/トウモロコシ/他 18トン/day(8H) 精米可能

工場外観 工場内部 最新鋭日本製機械導入

栄養問題・飢餓・貧困に貢献企業
農業で世界の架け橋へ
マイコバクテリウム核酸キット
Loopamp® 結核菌群検出試薬キット

LAMP
結核検査に光を！
生喀痰からの結核菌群検出が、可能となりました。

NALC処理不要
(NALC処理した検体も測定できます)

検体採取から
判定まで
約1時間

※体液、組織、気管支洗浄液又はそれらの液体培養液、あるいは表面検体上に増殖したコロニーの菌懸濁液

製 品 名 | 包装単位 | 貯蔵方法 | 有効期間 | 製品コード
---|---|---|---|---
(体外診断用医薬品 決定番号 22300AMX00638000) | | | |
Loopamp® 結核菌群検出試薬キット | 48テスト分 | 常温保存 | 15ヶ月間 | LMP520
Loopamp® 結核菌群検出試薬キット | 96テスト分 | 常温保存 | 15ヶ月間 | LMP521
Loopamp® 結核菌群検出試薬キット | 90テスト分 | 常温保存 | 2年間 | LMP802

LAMP法の詳細は、Eiken GENOME SITE：http://loopamp.eiken.co.jp/をご覧ください。
本製品の使用上又は取扱い上の注意については、添付文書及び使用説明書をご参照ください。
FUJIFILM

NEVER STOP
A greater freedom in X-ray imaging
さいごに

この冊子は、ストップ結核パートナーシップ発行の「The Global Plan to End TB 2018-2022」を日本リザルツが翻訳したものです。

本翻訳を作成するにあたり、（公財）結核予防会結核研究所名誉所長の森亨先生には、終始熱心なご指導ご鞭撻を賜りました。すべての方にわかりやすい翻訳を目指して、一字一句細部にわたり、表現を精査してくださった先生のお心優しいお力添えがなければ、この翻訳が完成することはありませんでした。心より感謝申し上げます。また、翻訳を進めるにあたり、ストップ結核パートナーシップの竹中伸一様からは、専門用語の使い方について大変有益な助言をいただきました。

翻訳の製本化に際しては、多くの企業の皆様からのご協力やご寄付をいただきました。そして、幣団体が長年にわたり、結核抑止に向けた取り組みを継続できているのは、折々で応援下さっている皆様のお陰です。1日も早い世界での結核終息を目指し、日本リザルツはこれからも、皆様とともに活動に勤んでいく所存でございます。どうか、今後ともよろしくお願いいたします。本当に有難うございました。

2020年8月吉日
日本リザルツ 理事長 浅野茂隆
代表 白須紀子
職員・ボランティアー一同

パラダイムシフト 結核終息のための世界計画：2018-2022
監修：森亨
協力：（株）五十鈴商事、栄研化学（株）、大塚製薬（株）、（株）タウンズ、（有）トータルマーケティングプリンティング、ニプロ（株）、（有）バンジャーブ、富士フイルム（株）（五十音順）
翻訳・制作：日本リザルツ職員・ボランティアー一同、梅木俊秀、田中栄一

ご意見・ご感想は日本リザルツ（Eメール：results.japan@gmail.com、電話：03-6268-8744）までお願いいたします。